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ABSTRACT
Array programming languages, such as MATLAB, are often
used for algorithm development by scientists and engineers
without taking into consideration implementation related is-
sues and with limited emphasis on relevant optimizations.
Application code optimization, especially in terms of data
storage and transfer behavior, is still an important issue and
heavily affects implementations’ quality in terms of perfor-
mance, power consumption etc. Efficient approaches for the
optimization of high level application code are required to
derive high quality implementations while still reducing de-
velopment time and cost. This paper presents MemAssist,
a software tool supporting application developers in detect-
ing parts of the application code in MATLAB that do not
exploit efficiently the targeted processor architecture and es-
pecially the memory hierarchy. Furthermore, the proposed
tool guides application developers in applying code trans-
formations in MATLAB for the optimization of the algo-
rithm’s temporal data locality. An image processing algo-
rithm has been optimized using MemAssist as a practical
usage scenario. Experimental results prove that the use of
MemAssist can heavily reduce cache misses (up to 40%) and
improve execution time (up to 30% speedup) on two differ-
ent processor architectures. Thus, MemAssist can be used
for optimized application code development that can lead to
efficient implementations while still reducing development
time and cost.
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1. INTRODUCTION
MATLAB is a high level array programming language

used broadly for prototyping algorithms in scientific and en-
gineering settings. At this level, developers do not consider
code optimization and implementation issues and they focus
on concisely evaluating their algorithms at a high level of ab-
straction. Providing optimization suggestions and applying
optimizations at this level can have a big impact on the qual-
ity of hardware implementations. This is particularly impor-
tant in a context where implementation code (C, VHDL) is
automatically generated from MATLAB codes targeting em-
bedded systems and devices such as mobile phones. Further-
more, supporting application developers in exploring high
level algorithmic space efficiently can lead to significant de-
velopment time and cost reduction since time consuming
design iterations (in case where constraints are not met at
low levels) can be avoided.

Most modern approaches on performance optimization of
loop dominated algorithms have focused on parallelization,
targeting relevant architectures. However to achieve global
optimization of an algorithm, optimization for parallelism
and locality and the reduction of recomputations should be
targeted in a balanced way [14]. In such a context, data
locality optimization and the evaluation of memory behavior
are very important issues.

In [10], MemAddin, a software tool for data reuse ex-
ploration including data reuse distance analysis and opti-
mization, is presented as an extension to Microsoft’s Visual
Studio IDE. MemAddin supports developers in efficiently
applying transformations for the optimization of loop dom-
inated algorithms in C (e.g. image and signal processing
applications). The suggested transformations target the op-
timization of algorithms’ data temporal locality and aim at
exploiting the target processor’s memory hierarchy to re-
duce cache misses and improve execution time. This paper
extends the work presented in [10] and introduces the fol-
lowing innovative contributions:

I MemAssist1, a software tool capable of providing de-
tailed data locality optimization suggestions and support-
ing relevant optimizations at MATLAB level. At this level
users traditionally do not apply implementation oriented op-
timizations as in lower level descriptions (e.g. in C). Except
from being provided as an extension to Microsoft’s Visual
Studio, MemAssist is currently also offered through the web.

I The required data reuse distance computation is per-
formed at C code level. A MATLAB-to-C compiler has been
developed for this purpose (MAFE). This compiler can re-

1http://www.lezos.gr/tools/memassist/



late the input MATLAB variables with output C code. Then
reuse distance analysis is performed in the C code and the
relevant optimization suggestions are mapped to the input
MATLAB code.

I Methods for inferring proper code transformations have
been developed and discussed in detail.

I The optimization of an image processing algorithm from
the UTDSP benchmark suite [16] is discussed. This case
study proves the effectiveness of MemAssist. Experiments
have been conducted on a cache simulator as well as on real
systems (a x86 laptop and an ARM smartphone device).

2. BASIC CONCEPTS

2.1 Proposed Flow
Existing design flows for embedded systems development

do not take into consideration implementation related issues
at MATLAB level. They depend solely on the compile time
optimizations performed by MATLAB-to-C/VHDL compil-
ers to achieve good quality C/VHDL code. The effectiveness
of optimizations applied at the MATLAB source code level is
discussed in the proposed approach. MemAssist exploration
tool targets the optimization of MATLAB application code
with respect to implementation. The C code generated from
the optimized MATLAB code, regardless of the MATLAB-
to-C compiler used, leads to better quality C code than the
code generated if implementation oriented optimizations are
not performed at MATLAB level. The main concept of the
proposed approach is presented in Figure 1.
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Figure 1: Structure of the MATLAB optimization
flow in MemAssist.

2.2 Data Reuse Concepts
A data element e of a source program is a scalar variable

or an array index that corresponds to a memory address. ae

is a runtime memory access to data element e and re is a
reference of e in the source code. In the code fragment
x = ...;

y = z*(w/5)+y;

... = x;

the data elements of the program are variables x, y, z and w.
The memory access trace for this would be the sequence {x,
z, w, y, y, x}, given that the right hand side of an assignment
is accessed left to right and before the left hand side. A
data reuse occurs between an element in the memory access
trace and its first reoccurrence. These two occurrences in
the stream are called the reuse pair and the corresponding
references that generated them are called the reference pair.
The number of accesses that occur between a reuse pair is
this pair’s time distance and the number of distinct data
elements accessed between them are their reuse distance.

2.3 Relating Reuse Distances to Source Code
The total reuse distance of a reference pair is the sum

of the reuse distances of all reuse pairs relating to it. For

the given example, the time distance between the first and
second occurrence of x would be 5 accesses while the reuse
distance would be 3 elements (z, w, y). Given the size of a
cache memory, the reuse distance of a reuse pair indicates
whether a cache miss will occur if the size of the elements
accessed between reuses is greater than the size of the cache.
Thus, in order to reduce cache misses, the reuse distance
must also be reduced by moving the two references that
generated the critical reuse pair closer together.

MemAssist uses a reuse distance histogram (RDH) to as-
sist the user in deciding upon the importance of each sug-
gested transformation while their type is inferred using the
method described in section 3. Loop pairs that encompass
reference pairs with high reuse distances are typically of
higher priority in the optimization queue. An RDH can be
constructed using the total reuse distances of a program’s
reference pairs. Each bar in this histogram represents a ref-
erence pair. A bar’s placement on the X-axis signifies the
total reuse distances of the pair and the Y-axis value repre-
sents the total reuses.

3. OPTIMIZATION APPROACH
The total reuse distances of the reference pairs are ob-

tained through instrumentation and profiling of the C code.
During instrumentation, static analysis is also performed in
order to get information about the data elements of the pro-
gram (number of dimensions, dimension sizes etc.). MemAs-
sist suggests either the fusion of a loop pair or the implemen-
tation of a tiling optimization. Both of these transforma-
tions have positive effects on data locality [8]. The following
method is used to automatically infer these transformations.
Every reference pair is matched to the loop pair where the
two references reside in. The data required to apply this
association between references and loops are acquired dur-
ing static analysis/instrumentation step. The whole process
described in this section is performed on a structure called
nested loop tree, where the hierarchy of the application loops
is represented. The code block that contains the loops (the
body of a function), is the root of the tree and is referred
as r. The rest of the nodes represent loops residing in that
block and they are identified by a unique incremental posi-
tive number for each node. The loop where the uses occur
in a reference pair is the source loop while the one where the
reuses occur is the sink. An example loop hierarchy with 8
loops is shown in Figure 2.
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Figure 2: Nested
loop tree.

From a nested loop tree the
distinction between a fusion and
a tiling-like optimization can be
made: (1) Tiling is inferred if the
source is the same with the sink or
if one is an ancestor to the other
because, in both cases, the reuse
occurs between iterations of the
same loop, (2) if none is an an-
cestor to the other it means that
use and reuse occur between iter-
ations of different loops and fusion of these loops is required.

This method could be applied by implementing a tree data
structure. In the implementation of MemAssist the usage of
a tree data structure and the accompanying traversals over
it are avoided. A number of sets equal to the number of
loops is initially defined. Each set corresponds to a node in
the nested loop tree and it’s denoted by Px. The contents of



these sets are the nodes that form a direct path from node
x to the root of the tree. This can be formalized using the
set-builder notation as follows:

T = {x | (x ∈ Z ∧ 0 ≤ x < N) ∨ x = r} (1)

Px = {y | (y ∈ T ∧ y = predecessor(x)) ∨ y = x} (2)

T contains all nodes of the tree, both the loops and the
block that encompasses them (r). The appropriate decision
is inferred according to which of the following statements is
true:

(Tsource ∩ Psink = {∅}) ∧ (Tsink ∩ Psource = {∅}) (3)

(Tsource ∩ Psink = Tsource) ∧ (Tsink ∩ Psource = {∅}) (4)

(Tsource ∩ Psink = {∅}) ∧ (Tsink ∩ Psource = Tsink) (5)

(Tsource ∩ Psink = {r}) ∧ (Tsink ∩ Psource = {∅}) (6)

(Tsource ∩ Psink = {∅}) ∧ (Tsink ∩ Psource = {r}) (7)

Tsource is a set that contains only the source loop and
Tsink contains only the sink. If Equation 3 is true then
neither source nor sink is an ancestor to the other and fusion
of these loops is required. In case they are the same loop
or one is an ancestor to the other, a tiling optimization is
inferred (Equations 4, 5). Equations 6 and 7 imply that one
of the references in not inside a loop so no transformation
is suggested. Consider the example of Figure 2 where a
reference pair’s use is inside loop 2 and the reuse is in loop
4. The input data would be:

N = 8, T = {r, 0, 1, 2, 3, 4, 5, 6, 7} , Tsource = {2} ,
Tsink = {4} , Pr = {r} , P0 = {0, r} , P1 = {1, 0, r} ,

P2 = {2, 0, r} , P3 = {3, 0, r} , P4 = {4, r} , P5 = {5, 4, r} ,
P6 = {6, 5, 4, r} , P7 = {7, 4, r} , Psource = P2, Psink = P4

and the proposed transformation:

Tsource ∩ Psink = {2} ∩ {4, r} = {∅}
Tsink ∩ Psource = {4} ∩ {2, 0, r} = {∅}

}
Fusion

4. EXPERIMENTAL EVALUATION
An image processing application from the UTDSP bench-

mark suite [16] has been coded in MATLAB and optimized
using MemAssist. C code has been generated for the origi-
nal and the optimized MATLAB code using both Mathworks
MATLAB Coder and MAFE. Execution time has been eval-
uated for six different versions of the application code (MAT-
LAB original and optimized, MATLAB Coder generated C
original and optimized, MAFE generated C original and op-
timized). All codes have been executed on two different plat-
forms: (1) an Intel Core i5 CPU at 2.50GHz with 7.85GB of
usable DDR3-1333 RAM and the following caches: I1 and
D1 (32 KB, 8-way associative, 64 byte line size), L2 (256
KB, 8-way associative, 64 byte line size), L3 (3 MB, 12-way
associative, 64 byte line size), and (2) an 832 MHz ARM
CPU with 512 MB RAM. The C codes have been compiled
with: (1) Visual C++ compiler using the /O2 optimization
switch on the x86 laptop, and (2) the Android NDK toolset
on the ARM smartphone. The MATLAB version of the code
has only been executed on the x86 platform. Two raster im-
ages have been used as inputs: one with 400x400 pixels size
and another with 100x100 pixels.

Figures 3a and 3b present the execution times of the appli-
cation for 500 executions while Figure 3c shows the average
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Figure 3: a,b) Comparison of execution time be-
tween the original and optimized versions of the
code. All values are normalized to the [0,1]
range. c) Average speedup. d) Memory perfor-
mance. Speedup is calculated with original/op-
timized and decrease percentage with ((original-
optimized)/original)*100.

speedups achieved for these executions. The C code gener-
ated from the optimized MATLAB code runs up to 1.3 times
faster on the ARM device and up to 1.21 times faster on the
x86 device than the code generated from the original MAT-
LAB code. A speedup of 1.28 is also achieved on the MAT-
LAB interpreter. Cavity detector [5] is a medical diagnostic
application that was optimized in [10] using MemAssist. A
speedup of 1.15 was observed for this algorithm on ARM.

Cache performance evaluation has been obtained using
the Cachegrind simulator [12]. The following realistic cache
configuration has been used for all simulations: I1 = (32KB,
8-way associative, 64byte), D1 = (32KB, 8-way associative,
64byte), L2 = (4MB, 16-way associative, 64byte). Figure
3d presents the results. D1 and L2 cache misses have been
decreased by 20.7% to 40% for both MATLAB Coder and
MAFE generated C codes while at the same time memory
accesses also decreased by 4.6% to 9.5%.

5. COMPARISON TO RELATED WORK
Several tools exist targeting evaluation of memory behav-

ior [9, 11, 15, 17, 7, 19, 1, 13]. Those utilizing data reuse
distance analysis are often used to estimate cache miss ratio
and to optimize locality. Only some of them are focused
on providing suggestions for code transformations that will
improve the data locality of an algorithm at a high level of
abstraction [10, 4, 3, 18, 2].

In the work presented in [4, 3, 2], SLO, a cache profil-
ing tool is discussed. The tool calculates reuse distances
in C programs and suggests code optimizations in a similar
way with MemAssist. The following comparative comments
can be made between SLO and MemAssist: (1) MemAssist
targets MATLAB in addition to C which has already been
extensively used as the input specification on most similar
systems, including SLO, and (2) SLO is dedicated to op-



timization suggestions via reuse distance analysis while in
MemAssist reuse distance analysis is used only in a part of
its features and metrics [10].

In [4, 3] an approach similar to the one followed in this pa-
per is presented for the inference of locality optimizing loop
transformations in the SLO tool. The whole process in this
approach is performed at the level of basic blocks rather
than at the level of loops. A control flow graph (CFG) is
used in conjunction with a structure, similar to the nested
loop tree, called the nested loop forest. The CFG is used
to infer the pair of outermost executed loop headers (OELH)
for the basic blocks where the reuse source and sink appear.
The OELH of a basic block is defined as its closest to the
root ancestor in the nested loop forest that is executed be-
tween use and reuse. Given the OELH source and OELH
sink: (1) tiling is inferred if they are the same node, as the
reuse source and sink occur between iterations of the same
loop, and (2) fusion is inferred if they are different loop
headers, because the reuse source and sink occur in different
loops. The advantage of the set-based approach described
in this paper over the corresponding in [4, 3] is that neither
CFG nor detailed information about the basic blocks of the
program are needed. The only required input data regard
the loop hierarchy and information about which loop en-
closes each memory reference. Thus, the method proposed
in this paper is much easier to implement, while predict-
ing the same transformations. In terms of accuracy both
methods produce similar results.

Most existing MATLAB compilers target the generation
of optimized lower level code for specific architectures. It is
the first time that a compiler is used to assist the inference
of locality optimizing transformations for MATLAB sources.
The only work where some sort of reuse distance analysis is
performed on algorithms written in a high level array lan-
guage is that of Chauhan and Shei [6]. They present an al-
gorithm to estimate reuse distances on MATLAB code using
an extended version of dependence graphs. There are two
main differences between that approach and the work pre-
sented in this paper: (1) in [6] authors perform static anal-
ysis on MATLAB code to infer the reuse distances while in
this work the actual reuse distances are calculated through
instrumentation and profiling, and (2) Chauhan and Shei
provide estimations about the cache misses caused by the
examined application while MemAssist guides the developer
in applying specific transformations that will optimize cache
performance by improving locality.

6. CONCLUSIONS
This paper discusses MemAssist, a software tool for the

optimization of MATLAB code in terms of temporal data
locality. Experimental results prove that the use of MemAs-
sist can lead to the generation of implementation code that
achieves shorter execution time and improved cache perfor-
mance. Furthermore the use of MemAssist can also signif-
icantly reduce development time and cost since exploration
is moved to higher levels of abstraction thus reducing explo-
ration time. The optimization of MATLAB sources before
MATLAB-to-C compilation tools may lead to the genera-
tion of better quality implementation code that meets per-
formance requirements and constraints. In this way time
consuming iterations are eliminated.
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