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ABSTRACT
Source code analysis and manipulation tools have become an
essential part of software development processes. Automat-
ing the development of such tools can heavily reduce devel-
opment time, effort and cost. This paper proposes a frame-
work for the efficient development of code analysis software.
A tool for automatically generating the front end of analysis
tools for a given language grammar is proposed. The pro-
posed approach can be applied to any language that can be
described using the BNF notation. The proposed framework
also provides a domain specific language to concisely express
queries on the internal representation generated by the front
end. This language tackles the problem of writing complex
code in a general purpose programming language in order to
retrieve information from the internal representation. The
approach has been evaluated through two different realistic
usage scenarios applied to a number of different benchmark
applications. The front end generator has also been tested
for twenty input grammars. In all cases the software gen-
erated by the proposed framework functions according to
the input grammar while the development time has been re-
duced on average down to 12% compared to equivalent hand-
written implementations. The experimental results give ev-
idence that the use of the proposed framework can heavily
reduce the relevant design effort and cost.

CCS Concepts
•Software and its engineering→Domain specific lan-
guages; Source code generation; Translator writing
systems and compiler generators;

Keywords
Domain specific languages; code query languages; source
code analysis; compiler generators
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1. INTRODUCTION
A plethora of source code analysis and manipulation tools,

both academic and commercial, have been proposed, espe-
cially the last two decades. Such tools are part of developers’
workflow and all major IDEs incorporate them as extensions
for numerous tasks. They can be used for program compre-
hension, software reengineering, refactoring, program met-
rics extraction and debugging and for many other purposes.

A code analysis and manipulation tool typically includes a
front end to parse the input language(s) and generate an in-
ternal representation (IR), usually in the form of an abstract
syntax tree (AST). Many compiler frameworks provide front
ends for one or multiple languages as well as a mechanism
to access the IR. Using an existing framework would sim-
plify things as the burden of developing the front end and
designing the IR would not lie on the developer. Roslyn [31]
and Clang [27] are good examples of interfaces employing
this approach. However, the disadvantage of this approach
is the limitation of working solely on the compiler’s input
languages.

Such tools also include a module for collecting program
information from the IR. Existing compiler frameworks in
many cases do not employ a querying system for this purpose
and custom passes over the IR have to be applied instead.
Complex code in a general purpose programming language
would have to be written in order to develop these passes
without the assistance of a querying mechanism. This is a
considerable inconvenience since it is a time consuming task
and a great overhead for the developer. Moreover, querying
an IR can be clearly considered a domain specific problem.
Modeling it with a domain specific language (DSL) would
introduce better expressiveness and thus reduce the devel-
opment time. DSLs are widely used to ease the modeling of
problems on different scientific areas [18].

The work discussed in this paper targets the realization
of software for the automated development of code analysis
and manipulation tools in order to reduce the relevant design
time, effort and costs. The proposed framework includes a
number of cooperating components including:

• The CastQL DSL. A query language accompanied by
the necessary steps for developing language dependent
queries starting from the problem formulation and reach-
ing the actual implementation. CastQL works on top
of an AST representation called contextual abstact syn-
tax tree (cAST). It is an embedded (internal) DSL [18]
that uses C++ as the host language. The design prin-
ciples and notation patterns described in [18] and [20]
are followed.



• An automatic front end generator (FEgen) producing
a parser for any given grammar using the BNF nota-
tion. All the code required for the front end and cAST
specification is automatically produced and no C++
coding is required from the developer. FEgen practi-
cally enables the use of CastQL on any input language.

Similar technologies are usually geared towards either anal-
ysis (examination oriented) [21, 2, 13, 12, 40, 6, 11, 3, 29, 9]
or manipulation (transformation oriented) [39, 23, 7, 22, 14,
10]. The proposed framework targets the rapid development
of tools for both areas. The following are the advantages of
the proposed work:

• There is no limitation to a predefined set of input lan-
guages. The input specification is customizable using
the BNF notation.

• CastQL’s expressiveness simplifies code querying. Even
in the occasion of a query that cannot be expressed in
CastQL, an alternative exists: custom traversals can
be developed directly in C++.

• The tools generated by the proposed framework can
be distributed as standalone C++ applications. This
leverages the need for a specialized execution environ-
ment that dominates most of the relevant works.

The remainder of this paper is organized as follows: An
overview of the proposed framework is presented in section 2
while the CastQL language is described in section 3. Section
4 discusses the integration of the proposed work into the
MEMSCOPT compiler as a demonstration example while
in section 5 experimental results from different code analysis
and manipulation tasks utilizing the proposed approach are
presented. Section 6 presents a review of existing work in
the field and section 7 discusses conclusions and directions
for future work.

2. FRAMEWORK OVERVIEW
The proposed framework includes a number of different

modules. The major ones are CastQL and FEgen. Figure
1 depicts the structure of the framework. Two main stages
are included: (1) the front end generation phase, when the
prototype of the tool is created by the FEgen tool, and (2)
the development environment used afterwards to extend this
prototype. These two phases are illustrated in Figure 1
as gray boxes entitled FEgen and Tool Prototype respec-
tively. Arrows with solid lines are used to indicate the flow
amongst the FEgen operations, arrows with dotted lines in-
dicate transactions between the components of the generated
tool, and the ones with dashed lines present the sequence of
the various phases incorporated in the generated tool.

FEgen is utilized to parse a BNF grammar and derive
the code that generates the parse tree. To achieve this, it
produces an annotated version of the grammar in the form
of standard Flex/Bison lexer and parser generators’ .y and .l
files. In the next step, two options exist for the specification
of the AST representation:

• FEgen can automatically infer the AST representation
from the parse tree. A pass is applied that refines the
parse tree in the following ways: (1) recursive BNF
constructs are transformed to a list of objects, and (2)
intermediate grammar symbols that are part of chain
productions are eliminated.
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Figure 1: Overview of the proposed framework.

• A graphical interface is provided to the user for the
custom definition of the AST constructs through an-
notations to the parse tree.

The source code generated by FEgen includes the front
end of the tool and the internal representation specification.
The IR includes the AST and a symbol table. FEgen cannot
infer a symbol table for every input language. A basic tem-
plate is provided which can be extended by the developer
according to his needs.

On the second development phase, the developer uses the
CastQL DSL and a library called synthesis framework to
apply querying and manipulation operations on the AST.
A modular way of query design is incorporated. Section 3
provides a description of the basic constructs and syntax
of CastQL. The synthesis framework is a C++ library that
assists the manipulation of the AST. It builds AST sub-trees
utilized for code generation and refactoring operations.

An AST that simplifies code navigation and searching is
used. Contextual abstract syntax tree (cAST) is a hetero-
geneous hierarchical tree whose nodes represent elements of
the program and edges connecting them according to the
input language’s grammar rules. To encode the AST se-
mantics and facilitate navigation and searching, each cAST
element has zero or multiple contexts (according to its type)
by which it connects to its descendants. The terms AST and
cAST are used interchangeably for the rest of the paper.

3. THE CASTQL DESIGN
Hierarchical decomposition using a multilevel strategy is

essential for tackling the problem of querying the code. Two
kinds of queries depending on the level of abstraction are
identified. The high level queries (HLQs) associate to the
program level; they depend on the input language and re-
trieve information directly exploitable by following phases of
the tool. To reduce complexity and maximize code reuse the
HLQs are synthesized by a combination of low level queries
(LLQs) that traverse the AST and collect nodes meeting
specific criteria. The consecutive application of a specific
combination of LLQs produces a set of AST nodes (nodeset)



that are the result of an HLQ. The information subsequently
becomes available to the designer through the interface of
the HLQ.

This method leaves the partitioning of information to HLQs
to the designer. However, in the practical implementation
example presented in section 4, relevant guidelines are given
for the design of a query engine for the MEMSCOPT com-
piler. Figure 2 presents the proposed realization flow.

The HLQs are typical C++ classes implementing a spe-
cific interface while LLQs and nodesets are the basic con-
structs of the CastQL DSL. An LLQ is applied to a nodeset
and always returns another nodeset as a result. There are
several different types of LLQs available, as well as a num-
ber of search filters that can be applied on them. A short
description of these filters and the LLQ types follows. The
basic LLQ types include:

(1) node - collects the objects of a specific AST node
type. Multiple node types can also be specified. (2) con-
text - collects the objects residing in a specific AST node
context. Multiple context types can also be specified. (3)
mixed - nodes of a specific type and the ones residing in a
specific context are both matched. (4) name - collects the
object having a specific name. The symbol table prototype
generated by FEgen must be utilized in order to take ad-
vantage of this LLQ type. (5) complex - a complex LLQ
is created from multiple others and applies each of them se-
quentially to the input nodeset. (6) similarity - this LLQ
collects the AST nodes that are the roots of sub-trees hav-
ing the same structure as a given prototype sub-tree. (7)
setop - returns the result of set operations applied on the
input nodesets. (8) clever - this LLQ has the same behav-
ior with a mixed LLQ but can also end the traversal upon
reaching specific node or context types.

The search filters are essentially a parameter of the LLQs.
They define which of the discovered nodes will be matched
and when the query will terminate its operation. The basic
search filters that can be applied on an LLQ include:

Knowledge about the anticipated tool
operations and the input language grammar

Specify required program
information for subsequent

compiler phases

Request Scenarios

Information partitioning according
to its context

Information Sets

Introduce a separate HLQ class
for each information set

HLQ Classes

Design the interface of each HLQ
class and use the CastQL language
to satisfy the query requirements

Query Engine

Figure 2: Proposed design implementation flow.

(1) shallow - discards the nodes discovered in AST lo-
cations other than the immediate descendants of the query
starting points. (2) deep first found - search may reach
at any depth but returns the first node matching the input.
(3) deep random access - search may reach at any depth
but returns the n-th AST node in the discovered sequence.
(4) exhaustive - search may reach at any tree depth and
returns the full set of nodes matching the input. (5) depth
specific first found - search returns the first node match-
ing the input located at most to a given depth. (6) depth
specific random access - search may reach a given depth
but returns the n-th node in the discovered sequence. (7)
depth specific exhaustive - search returns the whole set
of AST nodes matching the input located at most to a spe-
cific depth.

Another parameter of the LLQs concerns the order and
direction of the AST traversal. DFS traversal is the default
while BFS and upwards traversals are the alternative op-
tions. In upwards traversal the direction changes and the
parent of each examined node is visited instead of its de-
scendants.

4. USE CASES
The framework described in this paper has been utilized in

a number of compiler construction and code analysis works
[15, 25, 26, 37]. In this paper the use of the proposed frame-
work for the development of MEMSCOPT [15] source code
optimizer is discussed. In [25] a dynamic analysis tool for
C applications that exposes the critical application’s loops
for memory hierarchy optimization is discussed. In [26] the
tool presented in [25] is enhanced with features for data reuse
distance analysis and source code transformation recommen-
dations for temporal locality optimization. The proposed
framework has also been applied for the development of a
Scilab-to-C compiler [37].

4.1 MEMSCOPT Overview
MEMSCOPT is an interactive source-to-source code opti-

mization tool developed in the context of the FP7 ENOSYS
project1. It acts on C programs compliant with the C89
standard. The tool has two operational modes, one for each
of its two major facilities: 1) Analysis mode, and 2) trans-
formations mode. In the analysis mode, the tool embeds the
analysis results directly into the application code using a spe-
cial annotation language (SAL). SAL is used for both anal-
ysis assistance and documentation purposes. It is expressed
inside C comments (Figure 3a) and the user can employ it
to interact with the tool by providing input regarding anal-
ysis. Currently, SAL includes directives for loop naming,
loop iterator identification, loop count and loop weight.

Optimization of the code is an iterative process where each
step applies one or multiple refactorings. A large number
of transformations can be applied by MEMSCOPT includ-
ing loop shift, loop extend, loop reversal, loop fusion, loop
interchange, loop fission, loop normalization, loop reorder,
loop switching, loopscopemoveforward, and loopscopemove-
backward. Figure 3b presents the interface for the transfor-
mation(s) mode. It includes fields for: 1) setting the input
file and the output transformations’ directory, 2) selecting a
transformation from a transformation palette and configur-
ing it, 3) executing, saving and restoring the transformation

1http://www.enosys-project.eu/



� �
1 ...
2 /* @forloop:forloop_0 */
3 /* @iterator: k */
4 /* @#iterations: 5 */
5 /* @#loopweight: 1 */
6 for ( k=-GB; k<=GB; ++k ){
7 tot+=Gauss[abs(k)];
8 }
9 ...� �

(a)

(b)

Figure 3: a) Special annotation language. b) Trans-
formations interface.

steps made so far or backtracking to specific steps, and 4)
manipulating the transformations of each step. The whole
number of transformation steps applied result in an XML
transformation script. This script records the initial input
file and the full details of each transformation step.

4.2 MEMSCOPT Implementation
In this section the query development process in MEM-

SCOPT is discussed. In the first design step, the informa-
tion required by MEMSCOPT’s analysis and optimization
engines has been determined. The actual work in both cases
concerns the C application’s for loops which have to be iden-
tified and the determination of the information that must be
retrieved. Table 1 lists the information required, the HLQ
classes associated with this information, and a description
of the corresponding query routines realized in each HLQ.
The HLQ classes HLQTranslationUnit, HLQFunctionDef,
and HLQForLoop have been introduced. The realization
of these HLQs in CastQL is illustrated in Figures 4 and 5.

HLQTranslationUnit identifies the set of function defini-
tions inside the input program. This functionality is realized
in the CastQL code fragment of Figure 4a. It first creates an
LLQ (lines 1-4) identifying function definition objects inside
the AST. The exhaustive filter is applied which directs it to
explore the whole set of functions in the program. Then, the
query is applied to the root of the AST (lines 5-8). HLQ-
TranslationUnit creates an HLQFunctionDef object for each
function definition discovered in the program.

The objective of HLQFunctionDef is to identify the loops

Table 1: Information Request Scenarios.
Request Target HLQ

Get function definitions HLQTranslationUnit

Returns the AST objects representing function definition

Acquire function for-loops HLQFunctionDefinition

Returns the AST objects representing the for-loops in the
current function body

Acquire nested for-loops HLQForLoop

Returns the for-loops that nest in the body of the current
loop

Get loop body iterator instances HLQForLoop

Returns the AST objects corresponding to the loop iterator
in the context of the loop body

Get initializer expression HLQForLoop

Returns the right hand side of the assignment used to ini-
tialize the loop

Get initialization expression HLQForLoop

Returns the expression used to initialize the loop

Get adjustment expression HLQForLoop

Returns the expression used to update the iterator in each
loop iteration

Get finalizer expression type HLQForLoop

Returns the operator type used to update the loop iterator

Get finalization expression type HLQForLoop

Returns the expression used to finalize the loop

Get loop body statements HLQForLoop

Returns the loop body statements

Get primary iterator HLQForLoop

Returns the primary induction variable of the loop

lying in the scope of a specific function. This is realized in
the CastQL code fragment of Figure 5a. Two distinct LLQs
(lines 1-4 and 5-9) are combined in a single complex LLQ
(lines 10-13). The first LLQ routes the search to the func-
tion body, while the second identifies the underlying loops.
The latter applies the depth specific exhaustive filter to ex-
clude the nested loops lying in depth greater than 1. The
identified loops are deposited in the seto1 nodeset for subse-
quent exploitation. A new HLQForLoop is instantiated for
each discovered loop. These HLQForLoop objects conduct
new searches to identify nested loops.

An HLQForLoop first identifies the loop’s induction vari-
ables. A variable must appear in all four contexts of a loop
(initialization, finalization, adjustment, and body) to clas-
sify as induction variable. Figure 5b presents the CastQL
code that implements this. The inter3 nodeset contains
the variables appearing in all four regions. The expressions
defining the loop’s iteration space are also determined by
HLQForLoop. It first looks for any assignment expressions
containing the induction variable in the loop initialization
region. Then, it identifies the expression that initializes the

� �
1 fundefsPat = LLQ:: DEFINE(NODE)
2 .nodetype(FunctionDef)
3 .filter(EXHAUSTIVE)
4 .END();
5 fundefsSet = LLQ::APPLY()
6 .query(fundefsPat)
7 .on(mASTRoot)
8 .END();� �

(a)

Assignment

LHS

i

RHS

...

(b)

Figure 4: a) CastQL code fragment to identify func-
tion definition AST objects. b) Prototype AST sub-
tree for matching induction variable initialization.



� �
1 pat1 = LLQ:: DEFINE(CONTEXT)
2 .contexttype(FunctionDef_Body)
3 .filter(DEEPFIRSTFOUND)
4 .END();
5 pat2 = LLQ:: DEFINE(NODE)
6 .nodetype(ForLoop)
7 .filter(DEPTHSPECIFIC_EXHAUSTIVE)
8 .depth (1)
9 .END();� �

(a)

� �
10 patFunStat = LLQ:: DEFINE(COMPLEX)
11 .query(pat1)
12 .query(pat2)
13 .END();
14 seto1 = LLQ::APPLY()
15 .query(patFunStat)
16 .on(mFunDef)
17 .END();
18� �

(a)� �
1 patIdent = LLQ:: DEFINE(NODE)
2 .nodetype(Identifier)
3 .END();
4 patInitId = LLQ:: DEFINE(CONTEXT)
5 .contexttype(ForLoop_Init)
6 .END();
7 patFinId = LLQ:: DEFINE(CONTEXT)
8 .contexttype(ForLoop_Finalization)
9 .END();

10 patAdjId = LLQ:: DEFINE(CONTEXT)
11 .contexttype(ForLoop_Adjustment)
12 .END();
13 patBodyId = LLQ:: DEFINE(CONTEXT)
14 .contexttype(ForLoop_Body)
15 .END();
16 patForInitIde = LLQ:: DEFINE(COMPLEX)
17 .query(patinitid)
18 .query(patident)
19 .END();
20 patForFinIde = LLQ:: DEFINE(COMPLEX)
21 .query(patfinid)
22 .query(patident)
23 .END();
24 patForAdjIde = LLQ:: DEFINE(COMPLEX)
25 .query(patadjid)
26 .query(patident)
27 .END();
28 patForBodyIde = LLQ:: DEFINE(COMPLEX)
29 .query(patfbodyid)
30 .query(patident)
31 .END();
32 iniSet = LLQ::APPLY()
33 .query(patForInitIde)� �

(b)

� �
34 .on(mForLoop)
35 .END();
36 finSet = LLQ::APPLY()
37 .query(patForFinIde)
38 .on(mForLoop)
39 .END();
40 adjSet = LLQ::APPLY()
41 .query(patForAdjIde)
42 .on(mForLoop)
43 .END();
44 fbodySet = LLQ::APPLY()
45 .query(patForBodyIde)
46 .on(mForLoop)
47 .END();
48

49 interPat = LLQ:: DEFINE(SETOP)
50 .operation(INTERSECTION)
51 .END();
52 inter1 = LLQ::APPLY()
53 .query(interPat)
54 .on(iniSet)
55 .on(finSet)
56 .END();
57 inter2 = LLQ::APPLY()
58 .query(interPat)
59 .on(inter1)
60 .on(adjSet)
61 .END();
62 inter3 = LLQ::APPLY()
63 .query(interPat)
64 .on(inter2)
65 .on(fbodySet)
66 .END();� �

(b)� �
1 loopInitPat = LLQ:: DEFINE(CONTEXT)
2 .contexttype(ForLoop_Init)
3 .END();
4 assExpCase1 = Synthesis ::
5 CreateASTSubTree(
6 Assignment ,
7 assExpCase1 = Synthesis ::
8 CreateIdent(
9 GetPrimaryIterator ()

10 )
11 );� �

(c)

� �
12 assignInit1 =LLQ:: DEFINE(SIMILARITY)
13 .tree(assExpCase1)
14 .END();
15 assignsInit1 = LLQ:: DEFINE(COMPLEX)
16 .query(loopInitPat)
17 .query(assignInit1)
18 .END();
19 initAssignments = LLQ::APPLY()
20 .query(assignsInit1)
21 .on(mForLoop)
22 .END();� �

(c)� �
1 loopAdjReg = LLQ:: DEFINE(CONTEXT)
2 .contexttype(ForLoop_Adjustment)
3 .END();
4 adjRegion = LLQ::APPLY()
5 .query(loopAdjReg)
6 .on(mForLoop)
7 .END();
8 loopAdjExp = LLQ:: DEFINE(NODE)
9 .nodetype(PostfixIncreament)

10 .nodetype(PrefixIncreament)
11 .nodetype(PostfixDecreament)
12 .nodetype(PrefixDecreament)
13 .nodetype(Assignment)
14 .nodetype(AssignmentAddTo)
15 .nodetype(AssignmentSubtractFrom)
16 .filter(EXHAUSTIVE)
17 .END();� �

(d)

� �
18 adjExp = LLQ::APPLY()
19 .query(loopAdjExp)
20 .on(adjRegion)
21 .END();
22 iteratorPat =LLQ:: DEFINE(SIMILARITY)
23 .comparison(EQUALITY)
24 .tree(
25 Synthesis :: CreateIdent(
26 *piterator
27 )
28 )
29 .filter(EXHAUSTIVE)
30 .END();
31 adjId = LLQ::APPLY()
32 .query(iteratorPat)
33 .on(adjExp)
34 .END();� �

(d)



� �
1 tmp1 = LLQ:: DEFINE(CONTEXT)
2 .contexttype(ForLoop_Body)
3 .END();
4 tmp2 = LLQ:: DEFINE(NODE)
5 .nodetype(ForLoop_Body)
6 .filter(DEPTHSPECIFIC_EXHAUSTIVE)
7 .depth (1)
8 .END();� �

(e)

� �
9 pat4Nested4 = LLQ:: DEFINE(COMPLEX)

10 .query(tmp1)
11 .query(tmp2)
12 .END();
13 mNestedForLoops = LLQ::APPLY()
14 .query(pat4Nested4)
15 .on(mForLoop)
16 .END();� �

(e)

Figure 5: CastQL code fragments for: a) the detection of level-0 loops in the function body, b) loop induction
variables identification, c) identifying the induction variables’ initialization expressions, d) identifying the
induction variables’ adjustment expressions, and e) nested loops detection.

induction variable with the code fragment of Figure 5c. An
LLQ directs the search in the initialization region (lines 1-
3). After that, the synthesis framework creates the proto-
type AST sub-tree of Figure 4b (lines 4-11). This sub-tree
is used from the assignInit1 LLQ to match any assignment
expressions initializing the induction variable (lines 12-22).
Furthermore, HLQForLoop identifies the loop finalization
and adjustment expressions. The identification of loop ad-
justment expressions is shown in Figure 5d while the iden-
tification of finalization expressions is omitted since it is re-
alized with analogous code. The search is directed into the
loop adjustment context (lines 1-7) where it tries to identify
expressions of the operators i++, i − −, ++i, − − i, i=...,
i+=..., i-=... (lines 8-21). It then picks the expressions in
which the induction variable appears and discards the rest
(lines 22-34). As a final step, HLQForLoop identifies nested
loops in the current loop’s body using the CastQL code frag-
ment of Figure 5e. The tmp1 LLQ directs the search into the
loop body region and the tmp2 LLQ uses the depth specific
exhaustive filter to identify all the loops at depth 1. The
resulting nested loops are assigned to the mNestedForLoops
nodeset.

5. EXPERIMENTAL EVALUATION
The proposed framework was extensively evaluated from

three different perspectives: (1) First the productivity gains
achieved through the use of CastQL/FEgen are evaluated.
(2) Performance related results regarding the requirements
of the generated code in time and space are also discussed.
(3) Finally the code generation capabilities of FEgen tool are
evaluated and results regarding the size of the produced code
as compared to the input grammars are provided. When
code development by a human software developer is men-
tioned, throughout these experiments, an experienced de-
veloper with knowledge in compiler construction was used.

Figures 6a and 6b present the results of the first set of
experiments where FEgen and CastQL tools are evaluated
in terms of productivity. In the case of FEgen the effort
consumed for developing the front ends of four languages
(Figure 6a) has been determined. For each language, front
ends have been developed both manually and using the FE-
gen tool. The average effort in man-days required for de-
veloping front ends using the FEgen tool is only 12% of the
corresponding effort required for the manual development
of the front ends. Taking the code size into consideration,
the number of lines of code (LOC) produced daily has been
increased by a factor of 7.5 when using the FEgen tool.
CastQL has been evaluated for the development of three
source code instrumentation modules that have been incor-

porated into MEMSCOPT source to source code optimizer
[15]. These instrumentation modules are used for profil-
ing and specifically, for memory access trace file generation,
memory access metrics calculation [25], and data reuse dis-
tance measurement [26]. For each module a version based
on CastQL and a manually developed C++ version have
been implemented. Figure 6b compares the corresponding
development efforts. Much less code has been written when
using CastQL. An average reduction of LOC down to 28%,
compared to manually created query engines, has been ob-
served. This shows that CastQL improves modularity and
maximizes code reuse while maintaining the performance of
C++ since it is embedded to it.

For the performance evaluation of the proposed frame-
work, regarding the requirements of the generated code in
time and space, two practical usage scenarios have been
tested. For each scenario, a series of code analysis and
manipulation tasks used by MEMSCOPT are applied to
a number of input algorithms of different sizes. The first
scenario involves the application of three instrumentation
modules. The second scenario includes the application of
a series of loop transformations. These transformations in-
clude the expansion of all input loops’ bounds by ten more
iterations and the interchange of all nested loops. The codes
of six test applications have been used to compose the dif-
ferent inputs. The applications come from the image and
signal processing domain. In particular, the cavity detec-
tor [8] medical diagnostic application and five algorithms of
the UTDSP benchmark suite [33] have been used. MEM-
SCOPT ran on a DualCore Intel Core i5 CPU at 2.50GHz
with 7.85 GB of usable RAM. The size of each input is ap-
proached in terms of thousands of LOC (KLOC) and total
number of nodes required for the equivalent cAST repre-
sentation of the program. Figures 6c and 6d present the
execution time and memory usage of the examined scenar-
ios. Both time and space overheads are linearly related to
the input LOC and the number of AST nodes. Actually,
there is a slightly higher correlation to the number of AST
nodes since CastQL works directly on them. Our frame-
work’s performance depends primarily on the AST size and
less on other parameters such as the LOC. In any case, this
difference in correlation is minimal for the examined scenar-
ios, where the number of AST nodes has been estimated to
have an average ratio of 8:1 compared to the LOC of the
inputs. This ratio clearly depends on the complexity of the
lines though. It may vary significantly for different coding
styles and subsequently change the described correlation.

The evaluation of the automatic front end generation tool
is carried out by comparing a number of statistical metrics
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Figure 6: a) Total amount of uninterrupted labour
required for the development of different front ends.
b) Code size comparison between naive C++ and
CastQL implementations of three instrumentation
operations. The plot on the left measures the frac-
tion of code devoted to the querying mechanism in
comparison to the whole program. c) Execution
time, and d) memory consumption of the two ex-
amined scenarios compared to different input sizes.

regarding the size and complexity of the produced code in
relation to the input languages. Twenty BNF grammars
have been tested in order to prove the applicability and ro-
bustness of the generator. FEgen has been used to parse
the grammars of C89, CDecl [37], Scilab, MATLAB, Ruby,
PHP, C#, C++, Java, Delphi, XML, SQL, ALGOL60, Pas-
cal, Fortran, Ada95, COBOL, BibTex, Yacc, and SML that
either have been developed in the context of this research
or are publicly available and have been adapted for FEgen.
The generated C++ code is larger than the grammar size in
terms of LOC by a factor of 11 on average. 475 lines of BNF
grammar code correspond to 5220 LOC on average with no
C++ coding required by the developer. In this analysis the
generated lines of code concern only the process up until
the parse tree generation which is completely automated by
default. ASTs were specified only for the parsers of C89,
Scilab, MATLAB and CDecl. An average of 30% additional
LOC has been observed for these parsers compared to the
ones not implementing an AST. Further insights on the com-
parison of the C++ code generated by FEgen and the input
BNF grammars is given in the scatter plots of Figure 7. The
Spearman rank correlation analysis is used to determine the
correlation between the different examined metrics. As ex-
pected most of the compared pairs are highly correlated.
The LOC of the input grammar and the generated Bison .y
file, in particular, are extremely highly correlated since both
files have essentially almost the same content (the correla-
tion coefficient between them is 0.99). Another interesting
observation is that the MCC values of the input grammars
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Figure 7: Correlation between the input grammars
and the generated parsers. Statistical code metrics
include: the number of terminal symbols (TERM),
the number of nonterminals (VAR), the total num-
ber of production rules (PROD), the McCabe cyclo-
matic complexity (MCC) [34], the average RHS size
(AVS) [34], the LOC of the generated .l file (Flex),
the LOC of the generated .y file (Bison), the com-
ment LOC (CLOC), the logical LOC (LLOC), the
MCC of the generated C++ code (MCCC), the av-
erage methods/class (M/C), and the average state-
ments/method (S/M).

are not so highly correlated with the MCC of the generated
C++ programs (0.72). This means that, the complexity of
the input grammar does not have a direct impact on the
complexity of the generated code. The number of nonter-
minal symbols on the other hand play an important role on
the complexity of the code since VAR and MCCC have a
correlation coefficient of 1.

6. RELATED WORK AND COMPARISONS

6.1 Comparison with Code Querying Technolo-
gies

The objective of the framework proposed in this paper is
to significantly reduce the development time, effort and cost
of code analysis and manipulation tools. To achieve this,
concepts from both examination oriented [21, 2, 13, 12, 40,
6, 11, 3, 29, 9] and transformation oriented technologies [39,
23, 7, 22, 14, 10] are used.

Most of the transformation oriented metaprogramming
environments use SDF context free grammars for the speci-
fication of the input language [39, 7, 22]. This allows them
to operate on any input language. They also provide one or
multiple DSLs for querying and manipulating the code. Our
framework acts on any input language (one at a time) and
uses a DSL to expressively query the code. The advantage
of CastQL over existing work is that, since it is an inter-
nal DSL, it preserves the constructs and features of the host
language. This permits the application of custom traversals
written in C++, like in a classic compiler framework [31,
27], instead of using CastQL. In this way, an alternative is
provided for the application of queries that cannot be ex-
pressed in the querying language. Furthermore, unlike the



aforementioned works, the tools generated by the proposed
framework can be distributed as standalone C++ applica-
tions. This leverages the need for a specialized execution
environment, which usually runs on a specific platform, and
only a C++ compiler is required in order to use them on
any platform.

On the examination oriented domain, a number of lan-
guages for querying source code and the AST exist in the
literature [21, 2, 13, 12, 40, 6, 11, 3, 29, 9]. They are usually
logic programming languages (Prolog-like) [21, 40, 6, 11] or
relational algebra query languages (SQL-like) [12, 29]. De-
spite their good expressiveness and other positive aspects,
most of them are limited to a specific input language in con-
trast to the approach followed in CastQL. Additional studies
on the evaluation of code querying tools are available in [36,
1, 38].

Several approaches for code querying can also be found
in the internals of many compiler infrastructures. In the
simplest and most common case, they provide the ability
to write custom code in order to traverse an AST represen-
tation and collect information. Roslyn [31] and Clang [27]
were already mentioned in the introduction of this paper.
Similar features are also available in Gecos [16], ROSE [35],
Cetus [24], CIL [30], and SUIF [42]. The limited expressive-
ness of compiler frameworks for querying operations is their
major disadvantage over code query languages. Moreover,
similarly to most examination oriented systems, they only
accept a predefined set of input languages.

The proposed framework combines the input language
configurability of most transformation oriented systems and
the querying features of examination oriented approaches for
fast tools development. Furthermore, the object oriented na-
ture of the solution and the design principles and notation
patterns [18, 20] followed for the design of CastQL improve
modularity and maximize code reuse as shown in the exper-
imental evaluation section.

6.2 Automatic AST Construction
Many attempts have been made towards the automatic

generation of AST representations. Wile [41] proposes an
algorithm for the conversion of concrete syntax to abstract
syntax. This algorithm induces the abstract syntax from
an extension to the BNF notation called WBNF. Arusoaie
and Vicol [4] present a generic method for inferring AST
generation rules from a context free grammar. They also
provide a tool which automatically generates an annotated
version of a grammar using their method. Another similar
method where a series of transformations are applied on the
parse tree for inferring the AST is proposed in [5].

Some parser generators automate the construction of an
AST through annotations in the concrete syntax. ANTLR
[32] and SableCC [19] are good examples, though this op-
tion is no longer available in ANTLR as the latest version
generates only a parse tree instead. Other approaches that
use annotations in the concrete syntax to produce the AST
include the translational BNF (TBNF) [28] and the labelled
BNF (LBNF) [17] grammar notations.

The advantage of the proposed front end generator tool
(FEgen) over existing methods is that it actually incorpo-
rates both of the described approaches. A recommended
cAST specification is automatically deduced from the parse
tree. At the same time the user can optionally define his own
specification through annotations to the parse tree. This

way the overhead of manually specifying an entire AST is
eliminated while maintaining the ability to alter problematic
parts of the automatically generated one.

7. CONCLUSIONS
In this paper, a framework for the automated development

of code analysis tools in order to reduce the relevant design
time, effort and costs is discussed. The proposed framework
includes a number of cooperating components including a
front end code generator (FEgen) and a DSL for querying
the code (CastQL). A detailed discussion of these compo-
nents is provided. Experimental results show that the code
parsing and manipulation software generated by the pro-
posed framework works according to grammar specification
while the development time has been reduced on average
down to 12% compared to equivalent manual implementa-
tions.

Future work considers the enrichment of CastQL with ad-
ditional LLQ types and search strategies. The proposed
framework currently misses an integrated environment that
will enhance the collaboration between the individual com-
ponents. A Visual Studio extension is planned to be im-
plemented for this task in order to provide a seamless and
user friendly development environment. Effort is also de-
voted to the practical exploitation of the proposed work. Ex-
ploitation plans of priority include the use of CastQL/FEgen
in the development of a MATLAB compiler for automatic
SIMD parallelization.
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