
Dynamic Source Code Analysis for Memory
Hierarchy Optimization in Multimedia Applications

Christakis Lezos∗, Grigoris Dimitroulakos∗, Angeliki Freskou†, Konstantinos Masselos∗
∗University of Peloponnese, Department of Informatics and Telecommunications

Terma Karaiskaki, 22100 Tripoli, Greece
{lezos, dhmhgre, kmas}@uop.gr
†Ajax Compilers, Athens, Greece

info@ajaxcompilers.com

Abstract—Realizing image and signal processing algorithms in
embedded systems is a three step process including algorithmic
design, implementation and mapping to a target architecture
and memory hierarchy. This paper presents MemAddIn, a
dynamic analysis tool for C applications that exposes the critical
application’s loops which deserve the designer’s attention for
memory hierarchy optimization. MemAddIn is based on an
extension of MEMSCOPT compiler and integrates in the Visual
Studio IDE offering a unified environment for the application’s
implementation and optimization. To conclude on the criticality
of the application loops the tool utilizes two metrics which
are relevant with the underlying memory architecture cost and
performance.

Index Terms—Dynamic source code analysis, memory hierar-
chy optimization

I. INTRODUCTION

Nowadays the vast amount of digital electronic equipment is
based on embedded systems [1]. Their popularity lies in their
ability to satisfy many different types of constraints including
timing, size, weight, power consumption, reliability and cost.
For this reason, the most critical parts of the applications
are realized in embedded architectures which exhibit supe-
rior performance over general purpose processors. Hardware-
Software co-design methodologies [2] facilitate the mapping
of applications to this type of systems. For many embedded
applications, especially the ones referring to portable multi-
media devices, an integral part of these methodologies is the
optimization of the embedded systems memory hierarchy. To
optimize the application in terms of memory, its high level
specification should be inspected to focus on the parts with a
higher benefit for optimization. The high level specification is
more often expressed in C language while the most critical
parts of code are the iterative control flow constructs (for,
while etc.) that manipulate large multidimensional array data
structures. The identification of the most critical parts of code
is a challenge due to the following reasons: 1) embedded
applications consists of thousands of lines of code, thus it
is difficult to pinpoint the critical parts and 2) usually the de-
signer of the application code and the designer implementing
the optimization are different persons.

This paper presents MemAddIn1, a new tool offering dy-
namic source code analysis on C language source applications

1http://www.memaddin.com

with the purpose of identifying the critical loops in respect to
the optimization of memory hierarchy. Such loops are the ones
with high iteration count including operations on multidimen-
sional array data structures. Since memory operation can be
drastically improved by exploiting the data reuse, MemAddIn
quantifies the data reuse of each multidimensional array. In
summary, the profiling results reveal the critical loops and rank
the multidimensional arrays according to their data reuse in the
application context.

The profiling objective is satisfied by the dynamic estima-
tion of two code metrics: 1) the first one called Loop Weight
Metric (LWM) weights a loop respecting the number, size and
accesses of the arrays it operates on and 2) the other called
Array Reuse Factor (ARF) quantifies the data reuse in each
array by monitoring the accesses in the whole set of the array
elements.

The remainder of this paper is organized as follows: We
begin with an overview of the core components of MemAddIn
in section II and continue with a description of the LWM
and ARF metrics in section III. Section IV introduces the
demonstration example and finally, section V summarizes the
work and future actions.

II. SYSTEM DESCRIPTION

As with the majority of dynamic analysis tools, MemAddIn
uses instrumentation to extract the desired information from
the code [3]. Instrumentation can be performed at various
stages ranging from modifying the source code to rewriting
the executable file or even at runtime [4]. In the MemAddIn
case the extra code is inserted into the source code of the
application.

The tool heavily relies on MEMSCOPT source-to-source
compiler [5] for instrumenting the source code with appro-
priate counters that extract the necessary information. We
implemented the tool as a Visual Studio extension in order
to provide a seamless and user friendly environment. Thus,
making it useful for actual application by developers.

MemAddIn’s core component is a Visual Studio addin
dll file that arranges other elements, like the MEMSCOPT
compiler, in a sequence of phases. It is developed in C# and
it makes extensive use of the EnvDTE namespace. EnvDTE
is an assembly-wrapped COM library containing the objects



and members for Visual Studio core automation. It is the base
infrastructure where all Visual Studio addins are developed.
Figure 1 shows the interface of the MemAddIn extension.

Fig. 1. MemAddIn User Interface - LWM window

III. MEMADDIN PROFILING METRICS

In the following we present in detail the two metrics utilized
by MemAddIn:

A. Loop Weight Metric (LWM)

LWM characterizes the criticality of a loop respecting the
number, size and accesses of the arrays it operates on. Loops
with high LWM are considered heavy and time consuming
and could be candidates for loop optimizations. The LWM
calculation method for a single loop is described in definition1.

Definition 1.

LWM(X) =

N∑
i=1

(V Ai × V Si) (1)

where X is the name of the loop, N is the total number of
variables accessed within loop X, VA is the number of accesses
a variable has within that loop and VS is the static size of that
variable. Scalar variables have VS value 1 and are handled the
same way as a 1x1 array.

B. Array Reuse Factor (ARF)

It is a fact that smaller memories have lower cost in area,
delay and energy [6]. Likewise, an algorithms implementation
in an embedded system can significantly benefit from the
exploitation of cache or scratch-pad memories in the presence
of data reuse. To quantify the data reuse of an algorithm on
an array, the Array Reuse Factor (ARF) metric is devised. The
ARF measures the mean value of consecutive read accesses
that are followed by a write access for every array element.
Array elements with high ARF values can benefit from data
reuse optimizations [6] that aim to map frequently reused
values in smaller memories. The Reuse Factor calculation
method for a single array is described in definition 2.

Definition 2.
For : Ai → 0 < i < n (2)

ARFi =
sumri
sumwi

(3)

ARF = ARF0, . . . , ARFn (4)

where A is the name of the examined array, i is the index
of the array, sumr is the number of read accesses to a specific
array index and sumw is the number of continuous write
accesses to a specific array index. ARF focuses on consecutive
read operations since consecutive writes in the same memory
location has no particular usage in any algorithm implemen-
tation [6].

IV. DEMONSTRATION

The usage of MemAddIn is demonstrated on a realistic loop
dominated image processing algorithm called cavity detector
[7]. In this demonstration the LWM and ARF values are
calculated for the C code of a specific function within the
cavity detector application. The primary objective of this demo
is to display the capabilities of the tool. Optimization of the
code depends on potential actions taken afterwards by the user.

The cavity detector algorithm is managed within a Visual
Studio C/C++ project and the demonstration steps are as
follows: 1) the project is opened and MemAddIn is launched,
2) the user indicates the function to be examined from a list
of all the available functions in the currently edited C file, 3)
a number of required path related settings are set, 4) dynamic
analysis is initiated and upon its completion 5) the visualized
results are available to the user.

V. CONCLUSION AND FUTURE WORK

In this paper, we present a new tool offering dynamic
source code analysis on C language source applications with
the purpose of identifying the critical loops in respect to the
optimization of memory hierarchy. At present, two metrics are
defined and utilized for this task. Ongoing work considers the
improvement of the current and the development of additional
more mature metrics.

ACKNOWLEDGMENT

This work has been partially supported by the FP7 ALMA
(FP7 ICT-2011. 287733) project, funded by the European
Community.

REFERENCES

[1] D. Blaza and A. Wolfe. 2013 embedded mar-
ket study. UBM Tech Electronics. [Online]. Available:
http://e.ubmelectronics.com/2013EmbeddedStudy/index.html

[2] G. De Micheli, R. Ernst, and W. Wolf, Eds., Readings in hard-
ware/software co-design. Norwell, MA, USA: Kluwer Academic Pub-
lishers, 2002.

[3] D. Binkley, “Source code analysis: A road map,” in Proceedings of Future
of Software Engineering 2007, ser. FOSE ’07, Minneapolis, MN, USA,
May 2007, pp. 104–119.

[4] S. Shende, “Profiling and tracing in linux,” in Proceedings of the Extreme
Linux Workshop 2, Monterey, CA, USA, June 1999.

[5] G. Dimitroulakos, C. Lezos, and K. Masselos, “Memscopt: A source-to-
source compiler for dynamic code analysis and loop transformations,” in
Proceedings of the 2012 Conference on Design & Architectures for Signal
& Image Processing (DASIP), Karlsruhe, Germany, October 2012.

[6] J. Diguet, W. Catthoor, and H. De Man, “Formalized methodology for
data reuse exploration in hierarchical memory mappings,” in 1997 Inter-
national Symposium on Low Power Electronics and Design, Proceedings,
Monterey, CA, USA, August 1997, pp. 30–35.

[7] M. Bister, Y. Taeymans, and J. Cornelis, “Automated segmentation of
cardiac mr images,” in Computers in Cardiology 1989, Proceedings.,
Jerusalem, September 1989, pp. 215 –218.


