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ABSTRACT

In this demonstration we present the usage of XMSIM, a tool
for memory hierarchy evaluation of multimedia applications.
The input is a high level C code application description and a
memory hierarchy specification and the output are the statis-
tics characterizing the memory operation.

Index Terms— Memory simulation, memory hierarchy
evaluation tools, computer aided design, code transformations

1. INTRODUCTION

Memory architecture design is one of the major tasks in a for-
malized embedded system design flow. Memory operation
has a large impact on the overall efficiency of the system in
terms of performance and power consumption. The use of
cache memories has long provided a way to hide such laten-
cies and reduce power consumption [1]. For the above rea-
sons, it is highly acceptable today that memory hierarchy de-
sign is one of the major issues in modern embedded systems
design.

In this paper we present XMSIM, a memory hierarchy
evaluation framework that unifies the algorithmic develop-
ment and memory hierarchy optimization phase. XMSIM
tool is part of a tool chain developed in the context of the FP7
ENOSYS project [2] with the objective of designing efficient
memory architecture for the application’s input specification.

The tool’s main features are the capability to: 1) simulate
any subset of the application’s data types, 2) support user de-
fined mapping of data to memories , 3) simultaneously simu-
late multiple memory hierarchy scenarios, 4) immediate feed-
back to code transformations effect on memory hierarchy be-
havior and 5) verification utilities for the validation of code
transformations. Once the tested algorithm is correctly inte-
grated into the XMSIM environment, one can use the external
GUI to easily model many memory hierarchies in parallel and
collect the results in a file, instead of modifying the external
memory description file and run the tool from the command
prompt.

*This work has been partially supported by the FP7 ENOSYS (FP7 ICT-
2009.3.4 248821) project, funded by the European Community.

This paper is organized as follows: section 2 illustrates the
way a C file is integrated and the memory hierarchy descrip-
tion grammar, section 3 describes the demonstration example
and section 4 summarizes the work and future development.

2. SYSTEM DESCRIPTION

XMSIM is a library of memory simulation routines that de-
rives its stimuli from array accesses happening in the appli-
cation code. The code of the tested application along with
the XMSIM code compile as a single compilation project and
the derived executable supplies the simulation results (for the
given scenarios of memory hierarchies) after execution. Mul-
tiple memory scenarios can be simulated in one step while for
defining each memory architecture scenario a graphical user
interface is developed in Tcl/Tk. More details on the tool can
be obtained from [3].

The memory description grammar is of the form attribute:
value. Every virtual memory unit is named and its physical
or functional characteristics can be described. Memory units
can be virtually connected in order to operate hierarchically.
There is an explicit command that dictates direct connection
of a memory unit (DRAM or cache) to at most one CPU. En-
ergy dissipation of the SRAM caches, dictated using the ’Cost
per access’ directive, is calculated using results retrieved from
CACTI [4].

An example of memory hierarchy description is given in
figure 1. Two memory architectures are defined in a single
file. The first is comprised of a single DDR RAM memory
unit which is made of four banks of 1024 columns, 2048 rows
each. Every memory word consists of 32 bits. This memory
is standalone and therefore directly connected to the CPU.
In the second architecture, the memory hierarchy is made of
three memory units. The main memory is a single RAM of
1024 words of 8 bits, assisted by the L2 cache, which operates
under N-way policy, where N is 3. It acquires a write-through
miss policy and is made of 24 words of 8 bits each. The L2
cache memory unit is aided by the L1 cache memory, which
functionally operates under a write-back miss policy is direct-
mapped organized and physically bears 8 words of 8 bits.

In order to monitor memory accesses, the native-C type
arrays of the algorithm are converted into XMSIM’s objects



in C++. Figure 2 depicts an example of the engagement of
the algorithm’s arrays to the XMSIM environment. The CAr-
rayWrapper objects must be mapped to every tested memory
architecture. When these object arrays are referenced in the
algorithm, their accesses to every memory unit is recorded.

#Architecture 1
Name: DDR RAM;
Type: DDR;
Banks: 4;
Rows: 2048;
Columns: 1024;
Wordsize: 32;
CPU connected: yes;
end: DDR2;

#Architecture 2
Name: Single Ram;
Type: RAM;
Words: 1024;
Wordsize: 8;
end: Single Ram;

Name: L2;
Type: Cache;
Helps memory: Single Ram;
Memory policy: N-way;
N is: 3;
Words: 24;
Wordsize: 8;
Miss policy: write-through;
end: L2;

Name: L1;
Type: Cache;
Helps memory: L2;
Memory policy: direct;
N is: 1;
Words: 8;
Wordsize: 8;
Miss policy: write-back;
CPU connected: Yes;
end: L1;
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Fig. 1: Memory hierarchy description grammar.

//static unsigned char gauss_x_image[N][M];
//static unsigned char gauss_xy_image[N][M];
//static unsigned char comp_edge_image[N][M];
//static unsigned char out_compute[N][M][NB+1];
//static unsigned char max_compute[N][M];

int Dim1[2] = {N,M};
int Dim2[3] = {N,M,NB+1};
static CArrayWrapperT<unsigned char> gauss_x_image(2,Dim1,"gauss_x_image");
static CArrayWrapperT<unsigned char> gauss_xy_image(2,Dim1,"gauss_xy_image");
static CArrayWrapperT<unsigned char> comp_edge_image(2,Dim1,"comp_edge_image");
static CArrayWrapperT<unsigned char> out_compute(3,Dim2,"out_compute");
static CArrayWrapperT<unsigned char> max_compute(2,Dim1,"max_compute");

Fig. 2: Native-C type arrays conversion example.

The tool is equipped with validation tools to ensure that
the conversion process of native-C data types to C++ objects
is correct. When the engagement of the algorithm to the XM-
SIM environment is complete, the execution of the tool pro-
duces a new output file about memory usage. Write / read ac-
cesses are reported along with hits and misses for every mem-
ory unit. The results can be imported into a spreadsheet for
statistical evaluation. Furthermore the tool provides a map-
ping of the memory contents at one or more desired execution
points.

3. DEMONSTRATION

The file bearing the algorithm must be integrated into the XM-
SIM project as described in detail in [3]. As depicted in fig-
ure 2 the native-C type arrays must be converted to C++ ob-
jects in order to make their references in algorithm traceable.
The CArrayObjects are referenced in the code as native array
types, therefore no other adjustment in the core algorithm is
necessary.

Afterwards the memory units must be declared as in figure
1 in an external text file. An arbitrary number of architectures
can be described and tested in parallel. The CArrayObjects
are mapped into the main memory of every architecture.

After successful compilation of the project, XMSIM can
be invoked from the command line. The file containing the
memory architecture description is used as input. The result
is a text file that reports all memory accesses. For the purposes
of the demonstration the memory demanding algorithm cav-
ity detector [5] is tested, which is used for image processing.
The results obtained are identical with the results reported by
DineroIV [6].

4. CONCLUSION AND FUTURE WORK

In this paper, a memory hierarchy evaluation framework for
multimedia applications is presented. In the future the tool
is aimed at 1) automating the necessary native-C type arrays
to C++ object conversion, 2) support other types of memory
architectures (eg scratch-pad).
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