Matlab to C compilation targeting Application
Specific Instruction Set Processors

Toannis Latifis*, Karthick Parasharf, Grigoris Dimitroulakos*, Hans CappelleT, Christakis Lezos*,
Konstantinos Masselos*, Francky Catthoor!
*University of Peloponnese, Department of Informatics and Telecommunications

Terma Karaiskaki, 22100 Tripoli, Greece
{latifis, dhmhgre, lezos, kmas}@uop.gr

TInteruniversity Microelectronics Centre (IMEC)
Kapeldreef 75, B-3001 Leuven, Belgium

{Karthick.Parashar, Hans.Cappelle, catthoor}@imec.be

Abstract—This paper discusses a MATLAB to C compiler
exploiting custom instructions such as instructions for SIMD
processing and instructions for complex arithmetic present in
Application Specific Instruction Set Processors (ASIPs). The
compiler generates ANSI C code in which the processor’s special
instructions are represented via specialized intrinsic functions. By
doing this the generated code can be used as input to any C/C++
compiler. Thus the proposed compiler allows the description
of the specialized instruction set of the target processor in a
parameterized way allowing the support of any processor. The
proposed compiler has been used for the generation of application
code for an ASIP targeting DSP applications. The code generated
by the proposed compiler achieves a speed up between 2x-30x
on the targeted ASIP for six DSP benchmarks compared to the
code generated by Mathworks MATLAB to C compiler. Thus the
proposed compiler can be employed to reduce the development
time/effort/cost and time to market by raising the abstraction
of application design in an embedded systems / system-on-
chip development context while still improving implementation
efficiency.

Index Terms—MATLAB, compilation, Application Specific In-
struction Set Processor (ASIP), embedded systems, System-on-
Chip (SoC)

I. INTRODUCTION

MATLAB [1] is a popular language for algorithmic and
system modelling with several million users worldwide both in
industry and academia in different scientific and technical dis-
ciplines. In the context of embedded systems and Systems-on-
Chip MATLAB code is used as a high level input specification
for hardware and software development flows. Consequently,
MATLAB compilation to code that can be implemented in
an automated way to software or hardware has been made
essential in the domain of embedded systems systems-on-
chip. A number of tools [2], [3], [4], [5], [6], [7], [8] exist for
automatically generating C or VHDL code from MATLAB
sources.

Application Specific Instruction Set Processors (ASIPs)
offer a very interesting trade-off between implementation
efficiency (area and power for given performance) and flexi-
bility/programmability (to implement different algorithms, for
upgrading etc.) as compared to conventional CPUs and ASICs.

*This work has been partially supported by the FP7 ALMA (FP7 ICT-2011.
287733) project, funded by the European Community.

The instruction set of an ASIP is customized to benefit specific
set of applications. ASIPs are in most cases instantiated as
components in Systems-on-Chip (also field programmable
ones) in embedded systems. ASIPs are very popular for the
implementation of DSP algorithms such as baseband signal
processing and video processing and they can be designed
using commercially available tools such as Processor Designer
[9] from Synopsys.

The ever increasing application complexity creates the need
for raising the design abstraction and for design automation
in the form of compilers. To the best of our knowledge no
tools generating vectorized C code for ASIPs are currently
available. This paper presents a MATLAB to C compiler with
a number of features favoring its use in ASIP based hardware
platforms. MATLAB expressions matching the instruction set
of the targeted processor are exposed in C code in the form
of intrinsic functions that are exploited by the C compiler at a
later stage. In this way the proposed compiler can be used with
any C compiler such as the very popular LLVM/Clang and
GCC but also the (retargetable) ASIP compilers (i.e. Target
Suite Tool [9]). In this way the proposed compiler allows map-
ping specialized operations (in the form of intrinsic functions)
to specific hardware modules usually present in ASIPs. The
selection of the appropriate instructions is achieved with the
aid of a parameterized processor model. This approach allows
the proposed compiler to target any processor. Moreover, the
compiler’s backend may produce either scalarized or SIMD-
style C depending on the target processor. SIMD support can
be configured with respect to the blocks that are eligible for
SIMD code generation and the preferred vector size.

The proposed compiler has been evaluated using six real-
istic fixed point DSP algorithms. The benchmarks have been
mapped on an ASIP processor customized for DSP supporting
SIMD processing that has been used for the implementation of
complex wireless communication systems (baseband process-
ing). The performance (speed) of the generated C code has
been compared to that of the code generated by the Mathworks
MATLAB to C compiler. Experimental results show that the
proposed compiler achieves upto 30x on some benchmarks for
the target ASIP.

The remainder of this paper is organized as follows. Sec-
tion II summarizes the related work in the field. Section
IIT describes the proposed compiler infrastructure. Section
IV overviews the target architectures which were used for
the experiments. Section V, presents the experimental results
and finally, the conclusion of the paper and future work are
discussed in section VI.

II. RELATED WORK

Several approaches have been presented for the compilation
of MATLAB to languages that provide a more efficient execu-
tion/implementation environment. One of the first approaches
is FALCON [10], a MATLAB to FORTRANO90 compiler with
main key contribution the static and dynamic inference mecha-
nism supported by a sophisticated symbolic value propagation
algorithm. MATCH [3] compiler target high-level synthesis
and translate MATLAB code to a register transfer level HDL
supporting fixed point arithmetic. The tool provides a frame-
work of notations named as directives, that the user can insert
in MATLAB code to bridge the gap between MATLAB source
and the available computational structures. OTTER [4], and
MENHIR [5] are MATLAB compilers producing SPMD-style
C code for parallel code execution (MENHIR can produce C
or FORTRAN) relying on libraries such as Scalapack and
MPI message-passing libraries. The MAT2C [6], a similar to
Mathworks compiler [11], uses MAJICA [12] type inference
tool attaining better performance from Mathworks compiler
(MCC) [11]. MEGHA [7] uses a heuristic algorithm to map
data parallel regions of the program (kernels) to heterogeneous
processors (CPU and GPU). MATISSE [8] compiler focus on
MATLAB to C efficient compilation performing optimizations
and transformations on MATLAB code supported by LARA
[13] aspect-Oriented programming language.

Compiling MATLAB to C for vectorized processor architec-
tures using the Mathworks compiler and an auto-vectorization
compiler (i.e. LLVM) wouldn’t be a good solution. The infor-
mation related to vectorization which should be represented
in MATLAB would be partly counteracted or even eliminated
(due to internal transformations and other optimizations) dur-
ing translation to scalarized C code incapacitating the auto-
vectorizer to fully exploit the vectorized MATLAB operations.
Mathworks embedded coder [14] provides the user with an
environment to compile MATLAB code targeting embedded
systems. Embedded coder uses an architecture description
model similar to the one used by the proposed compiler
for the customization of the generated C code. The major
disadvantage is the lack of support for vector operations
since only instructions for scalars and arrays are supported
and vectorized C code cannot be generated. Even if array
(instead of vector) operations are used for the customization of
the generated code, code including operations with indexing
cannot be efficiently compiled. Furthermore, Embedded Coder
generates code storing sub-array references to an intermediate
temporary array and then the specialized function (correspond-
ing to customized instruction) is called. Such code leads in
most cases to a worse performance than the corresponding

code generated from the Mathworks compiler [2].

On the contrary, the approach proposed in this paper com-
piles MATLAB to C and generates SIMD-style C code using
a more appropriate representation in which array operands and
variables’ indices are expressed as vectors. This code is then
directly suited as input for LLVM level vectorizing compilers
(like Clang) or commercial C-level vectorizing compilers like
the Synopsys ASIP design environment [9]. To the best of our
knowledge no environments supporting MATLAB to C compi-
lation producing customized and vectorized C code for any tar-
geted processor (particularly useful in an ASIP implementation
context) currently exists. The proposed approach introduces a
multi-target MATLAB to C compilation framework extendable
and flexible to cover any target processor while still generating
customized and optimized code compatible with any C/C++
compiler. The proposed compiler uses a parameterized target
processor model and exploits the entire instruction set of the
processor. A set of declarative statements can be used by the
developer to select between SIMD and scalarized C code as
well as to select appropriately derived data types (floating
point, integer or fixed point).

III. COMPILER INFRASTRUCTURE

Figure 1 depicts the proposed compiler’s flow highlighting
the innovative contributions. The inputs to the compiler are
the annotated application MATLAB code and the instruction
set architecture of the target processor in xml. Annotations of
MATLAB code are introduced by the developer and given
in the form of pragma functions to declare the data type,
the array shape/size and the fixed point attributes (word and
fraction length) in the case of fixed point variable. Pragma
functions are also used for the selection of the parts of the
input code (SIMD blocks) that will be translated in SIMD
style allowing the developer to select the preferred vector size
of the block’s SIMD operations. Figure 2 shows the MATLAB

Parsing using
flex/bison
v

=

=]

=4

=

@

=
a.
=

_ e Z
. 1Z]
construction =3

a3

0 0 0 0 1 —

Specialized instruction set v

Intrinsic Function / |Instruction’s| Operands’/ Type inference/ E
name operator type result’s type Type checking o
(¢d

e @

fi, t_fi a—

<
ADD | + | SIMD |/L LA
t fi>
t_fi type
Data type Complex fixed point

Word, fraction | unspecified, unspecified

Shape / size unspecified

pud yoeg]

Floating
point

Fig. 1. Compiler infrastructure.

i

Fixed
point

-
dec_vect ("in’,’16",712",4,8); %variable declerations

dec_vect ("twd_fac’,’1¢’,7127,4,1);

dec_vect ("out’,’16’,’12’,4,8);

startSIMD("2");
5| for k=1l:size(in, 1) %stage 1
,k) = in(:,k) +in(:,k+4);
out (:,k+4) = (in(:,k) — in(:,k+4)).* twd_fac;

end
%code for stage 2 and 3

1
2
3
4
5
6 out (:
7
8
9
0| stopSIMD() ;

Fig. 2. FFT-32 stage 1, MATLAB code annotated for SIMD generation.

1| for(si=0; si < 4; si=si+2){ //SIMD block for-loop

2 for(k=1; k < 5; k=k+1){

3 out[(si+ (k-1)*4)/2]1=ADD(in[(sit+ (k=1)%4)/2],in[(si+ (k+3)*4)/2]1);
4 tmp0[si/2]=SUB(in[(si+ ((k=1)x4))/2],in[(si+((k + 3)%4))/2]);

5 out[(sit((k + 3)x4))/2]=VMUL(tmp0[si/2], twd_fac [si/2]);
6|}

7

8

. //code of the rest FFT stages is continued here

Fig. 3. FFT-32 stage 1, SIMD C code.

code of the first stage of a 32-point FFT annotated for SIMD
code generation. The dec_vect pragma functions declare vector
variables of complex fixed point data type with word length
of 16 and fraction length of 12 while the last two parameters
are referred to the dimensions of the variables. The startSIMD
and stopSIMD pragma functions define the SIMD block while
the parameter (value 2) of startSIMD indicates the selected
SIMD width.

The parameterized processor model describes the instruction
set architecture of the target processor including specialized
instructions. The model includes a list with information about
the instructions. For each instruction the function name or
operation type, the corresponding instruction name in C, the
instruction type (scalar, SIMD or array) and the operands’ (and
result’s) types are provided. For the instructions which can be
mapped without the requirement of any of the type’s attributes,
the corresponding attributes can remain unspecified.

In the compiler’s middle-layer, type inference analysis is
performed using an approach similar to the one described
in [10] only for compile-time type detection. In the next
step, the instruction selection pass utilizes the parametrized
processor model to map available specialized instructions
to function calls and MATLAB operations. To achieve this,
the traversal passes to the model, the operands/parameters
types, the operation type or function name and information
on whether or not the current function or operation is part
of a SIMD block. After instruction selection, a separate pass
is applied to transform Abstract Syntax Tree (AST) to a
low-level intermediate representation (IR). This pass involves
the decomposition of complex MATLAB array expressions
to simpler ones retaining the vectorized form of the SIMD
operands.

The compiler’s back-end comprises of the code generation
which generates the special instructions as intrinsic functions.
The output depends on the developer’s SIMD block declara-
tions and may be scalarized where MATLAB array expressions
(operations) are translated to C loop nests or SIMD-style C
where each SIMD block is implemented as a C for-loop.
The for-loops corresponding to SIMD blocks are composed

by a for-loop condition depending on the array size of the
SIMD block operands while the for-loop iteration step is the
vector width has been specified in the SIMD block pragma
function. The derived data types can be floating point, integer
or fixed point. For the latter, extra C code is generated for
handling fixed point arithmetic such as shifting to adjust the
operand’s fraction length. Figure 3 presents the generated
SIMD code of the MATLAB code depicted in figure 2. The
output includes the SIMD block for-loop with step 2 (defined
SIMD width) and loop condition 4 as the operands’ size for
the specialized instructions. The complex fixed point addition,
subtraction and multiplication have been mapped to ADD,
SUB, VMUL intrinsic functions respectively, while flattening
has been performed for the generation of the vector indices.

IV. TARGET ARCHITECTURE

The ASIP approach provides a tradeoff between the less
specialized general purpose processors on one hand and the
rigidly defined and highly optimized ASIC platforms. ASIPs
target application specific domains to sharpen the efficiency
of implementation while keeping them programmable across
various applications in the chosen domain. ADRES is an ASIP
architecture template targeting applications in the streaming
domain suitable for many signal processing applications. This
template has been used in the past for multi-media and
wireless signal processing applications and very high power
and throughput efficiencies have been reported. It has also
been able to prove that in some cases [15], that careful design
choices while deriving ADRES can surpass the efficiency
of ASIC and FPGA based designs in terms of performance
achieved and more importantly, the development time. In this
work, an instance of the ADRES template BoT has been
chosen to experiment with.

The BoT is a 10
way VLIW instruction -
ﬁ Vector RF
\

set processor. It has
[

Vector
Memory

Vector
Memory

been envisioned spe-
cially for implementing
wireless physical layer
signal processing [16].
The BoT architecture
consists of 4 essential
parts as shown in figure
4. These parts are: the |
scalar data path which
is used for managing the control flow, the shuffle unit that
orders/ re-orders vector-type data in a vector register file, the
load-store (LD/ST) unit for interaction with vector memory
and the SIMD data-path that enables massive parallel com-
putation. The vector paths are 3 with each of them capable
of supporting 4 or 8 way SIMD complex data type with
an aggregate width of 32 bits allocated as 16 bits each for
imaginary and real parts. The choice of SIMD width between
4 and 8 is a design time choice that the template provides.
The vector register file is also 32 deep and 256 bits (or 128
bits for 4 way SIMD) wide to hold vectored data serving

10 way VLIW Instruction Set

Fig. 4. BoT architecture.

any of the three Vector units. The vector instructions include
Trigonometric functions like Sine, Cosine and inverse-Tangent
functions, complex number operations such as absolute, mul-
tiply accumulate (MAC), multiple shift, real operations such
as inverse and inverse square on vector data types.

The BoT architecture is coded using the Synopsys ASIP
design tool [9]. In this tool the processor is described using the
nML language. The tool generates all required compilation, de-
bug and simulation infrastructure for the defined architecture.
Benefitting from these facilities, the BoT architecture exposes
several domain specific functionalities as C language intrin-
sics. These intrinsics directly map to one or more predefined
group of instructions on the processor and can be called like
a regular C-language function sub-routine.

V. EXPERIMENTAL RESULTS

The proposed compiler has been used to generate code for a
number of application benchmarks for the BoT ASIP discussed
in previous section. Mathworks compiler [2] has been also
used to generate code for the application benchmarks for
the targeted processor to allow comparisons. In this case the
benchmark application codes have been modified to add fixed
point behavior in the source code using fi objects [17]. The
C application codes generated by both the proposed compiler
and the Mathworks compiler have been mapped to the targeted
processor using the compiler of the Synopsys ASIP Designer.

The proposed compiler has been eval- gig. 5. Reference val-
vated and compared against Mathworks ues corresponding to
MATLAB to C compiler using six fixed performance value 1.

. . . FFT32 1443
point DSP algorthms under .dlff?rent FFT64 8032
scenarios concerning the applications’ FT128 17420
. . . CFO32 11563
input stream sizes. The experiments CFO64 29483
have been carried out using SIMD pro- CFO128 45608
ing width of 8 t FFT al MEANG o

cessing width o except FFT algo- MEANGA 256
rithms, where SIMD processing width MEANI128 448

. MEAN1024 3152
of 4 has been used. Using SIMD pro- FIR32:256 724074

cessing width of 8 on FFT is not mean-
ingful since more data shuffling would be needed thus dra-
matically decreasing performance. Furthermore, due to the
incompatibility of performance value ranges the experimental
results referring to performance have been normalized per each
application and input size. Figure 5 describes the cycles that
correspond to a performance value of 1 for each application.
Figure 6 presents the normalized execution times per appli-
= proposed compiler

Mathworks compiler speed up factor

1 30

I
[

X
=1
W
"

Speed up (factor)

111081

v o

5 > N
VO &
& & & ©

» &P QL
S > N 2

G F &S S
R R S

10

I I 5

L 0
™
V

Fig. 6. Speed up comparing with Mathworks compiler.

cation achieved by both the proposed compiler and Mathworks
compiler on BoT processor. Furthermore, the line added in the
same figure depicts the execution speedup achieved with the
proposed compiler over Mathworks MATLAB to C compiler.
The comparison of the proposed compiler to Mathworks com-
piler proves that the proposed approach achieves a significant
speed up between 2x-30x.

VI. CONCLUSIONS AND FUTURE WORK

In this paper a MATLAB to C compiler is presented target-
ing embedded systems and specifically Application Specific
Instruction Set Processor architectures. A key feature of the
proposed compiler is the parametrized processor model allow-
ing the matching of MATLAB expressions with the available
hardware modules of any targeted architecture. The compiler
generates SIMD or scalarized ANSI C code representing the
special instructions in the form of intrinsic functions. Experi-
mental results show substantial better performance against the
Mathwork MATLAB to C compiler.

Ongoing work concerns the use and benchmarking of the
proposed compiler on other architectures such as ARM NEON
general-purpose SIMD engine and GPU architectures.

REFERENCES

[1] Matlab the language of technical computing. [Online]. Available:
http://www.mathworks.com/products/matlab

[2] Matlab coder generate ¢ and c++ code from matlab code. [Online].
Available: http://www.mathworks.com/products/matlab-coder

[3] P. Banerjee, N. Shenoy, A. Choudhary, S. Hauck, C. Bachmann,
M. Haldar, P. Joisha, A. Jones, A. Kanhare, A. Nayak, S. Periyacheri,
M. Walkden, and D. Zaretsky, “A MATLAB compiler for distributed,
heterogeneous, reconfigurable computing systems,” in FCCM ’00.

[4] M. Quinn, A. Malishevsky, N. Seelam, and Y. Zhao, “Preliminary results
from a parallel MATLAB compiler,” in IPPS/SPDP '98.

[5] S. Chauveau and F. Bodin, “Menhir - An Environment for High
Performance Matlab,” Sci. Program., vol. 7, no. 3-4, pp. 303-312, Aug.
1999.

[6] P. G. Joisha and P. Banerjee, “A Translator System for the MATLAB
Language,” Softw. Pract. Exper., vol. 37, no. 5, Apr. 2007.

[71 A. Prasad, J. Anantpur, and R. Govindarajan, “Automatic Compilation
of MATLAB Programs for Synergistic Execution on Heterogeneous
Processors,” in PLDI ’11.

[8] J. Bispo, L. Reis, and J. M. P. Cardoso, “Multi-Target C Code Generation
from MATLAB,” in ARRAY ’14.

[9]1 Synopsys - asip designer. [Online].

http://www.synopsys.com/dw/ipdir.php?ds=asip-designer

L. De Rose and D. Padua, “Techniques for the Translation of MATLAB

Programs into Fortran 90,” ACM Trans. Program. Lang. Syst., vol. 21,

no. 2, pp. 286-323, Mar. 1999.

Matlab compiler - build standalone

tions from matlab programs. [Online].

http://www.mathworks.com/products/compiler/index.html

P. G. Joisha and P. Banerjee, “The MAGICA Type Inference Engine for

MATLAB,” in CC ’03.

J. M. Cardoso, T. Carvalho, J. G. Coutinho, W. Luk, R. Nobre, P. Diniz,

and Z. Petrov, “LARA: An Aspect-oriented Programming Language for

Embedded Systems,” in AOSD ’12.

Embedded coder - generate ¢ and c++

timized for embedded systems. [Online].

http://www.mathworks.com/products/embedded-coder

R. Fasthuber, F. Catthoor, P. Raghavan, and F. Naessens, Energy-Efficient

Communication Processors. Springer New York, 2013.

Bot- a low power processor for wireless baseband. IMEC. [Online].

Available: http://tinyurl.com/olasdj6

Construct fixed-point numeric object - matlab fi. [Online]. Available:

http://www.mathworks.com/help/fixedpoint/ref/fi.html

Available:

[10]

[11] applica-

Available:
[12]

(13]

[14] code op-

Available:
[15]
[16]

[17]

