
Reuse Distance Analysis for Locality
Optimization in Loop-Dominated Applications

Christakis Lezos, Grigoris Dimitroulakos, Konstantinos Masselos
University of Peloponnese, Department of Informatics and Telecommunications

Terma Karaiskaki, 22100 Tripoli, Greece
{lezos, dhmhgre, kmas}@uop.gr

Abstract—This paper discusses MemAddIn, a compiler assisted
dynamic code analysis tool that analyzes C code and exposes
critical parts for memory related optimizations on embedded
systems that can heavily affect systems performance, power and
cost. The tool includes enhanced features for data reuse distance
analysis and source code transformation recommendations for
temporal locality optimization. Several of data reuse distance
measurement algorithms have been implemented leading to dif-
ferent trade-offs between accuracy and profiling execution time.
The proposed tool can be easily and seamlessly integrated into
different software development environments offering a unified
environment for application development and optimization. The
novelties of our work over a similar optimization tool are
also discussed. MemAddIn has been applied for the dynamic
computation of data reuse distance for a number of different
applications. Experimental results prove the effectiveness of the
tool through the analysis and optimization of a realistic image
processing application.

Index Terms—Data reuse distance analysis, locality optimiza-
tion, memory hierarchy optimization

I. INTRODUCTION

Nowadays the vast amount of digital electronic equipment is
based on embedded systems [1]. Their popularity lies in their
ability to satisfy many different types of constraints including
timing, size, weight, power consumption, reliability and cost.
For this reason, the most critical parts of the applications are
realized in embedded architectures which exhibit superior per-
formance over general purpose processors. Hardware-software
co-design methodologies facilitate the mapping of applications
to this type of systems. For many embedded applications,
especially those referring to portable multimedia devices, an
important part of these methodologies is the memory hierarchy
optimization. One approach to optimize an application in terms
of memory usage is the application of locality optimizing
transformations at a high level. A sequential execution of a
program can be viewed as a stream of memory data accesses,
where the notion of time is defined by the number of accesses
rather than clock cycles. The number of distinct data elements
accessed between two consecutive uses of the same element is
called the reuse distance. This notion is equivalent to temporal
data reuse but in a machine independent manner. Data reuse
distance analysis (RDA) [2], [3] is a valuable process that
provides quantitative measures of program locality that can
be then used to drive the locality optimization process.

*This work has been partially supported by the FP7 ALMA (FP7 ICT-2011.
287733) project, funded by the European Community.

MemAddIn1[4] is a compiler assisted dynamic code analysis
tool that supports the optimization of application code in C
targeting embedded system implementation. In most cases the
most critical parts of the code are the iterative control flow
constructs (for, while etc.) that manipulate large multidimen-
sional array data structures.

This paper discusses the implementation of data reuse
distance analysis in MemAddIn tool. The tool’s capabilities
are used to indicate and realize source code optimizations that
may improve temporal locality and reduce cache misses on
the targeted architecture cache(s). The main contributions of
the proposed work are:

• Efficient algorithms for data reuse distance computa-
tion. Measuring the reuse distance between two memory
accesses is not a straightforward task and algorithms
are needed to perform this task efficiently. A consistent
realization of data reuse distance computation algorithms
developed over the years is provided in MemAddIn. The
profiling execution time for different algorithms has been
evaluated and the results prove that our algorithms’ im-
plementations perform proportionally to their theoretical
time complexity.

• The integration of the proposed tool into a popular
development environment. MemAddIn is released as an
extension for the Visual Studio IDE offering a unified
environment for the application’s design and optimiza-
tion. The integration of MemAddIn tool in Linux based
environments is planned as well.

• The optimization of a realistic loop-dominated edge
detection image processing application [5], using
MemAddIn, proving the effectiveness of the pro-
posed tool.

II. BACKGROUND AND BASIC CONCEPTS

For a coherent presentation and understanding of the data
reuse distance analysis topic the basic concepts used in this
work are briefly introduced below:

• Memory Access is a runtime access to a specific data
element of the memory, and Memory Reference is a
source code construct that generates memory accesses.

1http://www.lezos.gr/tools/memaddin/

In C language it could be a variable or an array index
being referenced.

• Memory Access Trace is a sequence of all the memory
accesses performed during the execution of a program.

• Data Reuse. A reuse happens between an element in
the memory access trace and its first reoccurrence in the
stream.

• Reuse Pair. The two occurrences of an element in a reuse
are called the Reuse Pair. The first one is the Reuse Source
and the second the Reuse Sink. The equivalent terms for
the memory references associated with a reuse are the
Reference Source, Reference Sink, and Reference Pair.

• Time Distance [6] aka Reference Distance [7] or Absolute
Reuse Distance [8]. The total number of accesses between
reuses. The time distance for every access is calculated
by subtracting the time of the reuse source from the time
of the reuse sink (Figure 1a). The overall time distance of
a reference pair is the sum of all distances relating to it.

• Reuse Distance [3] aka LRU Stack Distance [9] or Unique
Reuse Distance [8]. Similar to time distance but for the
number of distinct data elements accessed between reuse
source and sink (Figure 1a).

• Reuse Distance Histogram (RDH) aka Reuse Signature.
The distribution of reuse distances in an execution can
be viewed as a histogram (Figure 1b) where each bar
represents a source code data element or a reference pair.
A bar’s placement on the X-axis signifies the total reuse
distances of the memory accesses related to this element
and the Y-axis value represents the total reuses.

Increased temporal locality is achieved when accesses to
the same memory data element occur in a small time interval
[10]. Depending on the size of the cache we can say that high
temporal locality can offer a smaller cache miss rate. Time and
reuse distance have both been proposed as a metric for data
locality [2], [3], [6], [7]. Reuse distance though, has a clearer
connection with cache behavior. It can actually determine the
miss ratio for a fully-associative LRU cache by comparing
the reuse distance of a memory element with the cache size.
Beyls and D’Hollander [3] show that even for caches with a
low associativity level or direct mapped caches, reuse distance
can predict the number of cache misses accurately.

Figure 1a presents an example of a program execution with
five data elements and eleven memory accesses. Each dashed
arrow represents a reuse pair starting from the reuse sink of
an element in the access trace and pointing to its previous
occurrence: the reuse source. The time and reuse distances of
a reuse are shown under its reuse sink. Distances for the first
access of each element are set to infinite because there is no
reuse source available. The corresponding histogram for this
execution can be seen on Figure 1b. Element a has two reuses
and a total reuse distance value of 3, while elements b and c
are not visible because they have no reuses. On a hypothetical
memory with size equal to three elements there would be no
misses caused by element a. Though, misses will be caused
by elements d and e because their reuse distances are greater

Time

Access

Time
distance

0 1 2 3 4 5 6 7 8 9 10

e d c e a b e a e a d

∞ ∞ ∞ 3 ∞ ∞ 3 3 2 2 9

Reuse
distance ∞ ∞ ∞ 2 ∞ ∞ 2 2 1 1 4

(a)

0 2 4 6 8
0

1

2

3

Total reuse distance

R
eu

se
s

a
b
c
d
e

(b)
Fig. 1. a) Memory access trace. b) Reuse distance histogram.

than 3. The memory is presented as a dashed vertical line
on the histogram. MemAddIn uses a reuse distance histogram
as a visual aid to make optimization suggestions for a given
memory hierarchy.

III. DATA REUSE DISTANCE COMPUTATION

A number of data reuse distance analysis algorithms have
been implemented in MemAddIn, including: algorithms for
measuring the data reuse distance of the reference pairs
[9], [12], [13], [14], [11], [2] and algorithms for sampling
the memory access trace before any actual measurement is
performed [15]. Each implementation obeys the following
pattern on every runtime memory access: 1) for simplicity
all array indexes are flattened at a first step, and 2) one
of the available sampling algorithms is then executed. The
sampling algorithm determines the number of accesses to be
skipped. Profiling overhead of reuse distance computation can
be reduced significantly through sampling of the access trace.
MemAddIn implements the set sampling, time sampling, and
reservoir sampling methods [15]. 3) If sampling indicates that
an access should be evaluated for reuse, one of the data reuse
distance measurement algorithms is called. This algorithm
updates a structure holding the reuse distance data for each
reference pair.

Computing the data reuse distance of reference pairs pro-
vides a more accurate approximation metric for temporal
locality than time distance. Unfortunately, this is a more
complex task, than measuring the time distance. Apart from
the simple but time demanding algorithm of naively counting
the distinct elements, a number of more efficient algorithms
have been proposed over the years [9], [12], [13], [14], [11],
[2]. Most of them have been realized in MemAddIn. The
data structures used throughout these implementations were as

TABLE I
REUSE DISTANCE MEASUREMENT ALGORITHMS.

Proposal Method Time

Time distance [6], [7], [8] - O(N)
LRU stack (list-based) [9] From scratch O(NM)

Markers (two lists) [11] Based on [9] O(N
√
M)

Bit vector / m-ary tree [12] Based on [9] O(NlogN)
Balanced BST (AVL tree) [13] Based on [12] O(NlogM)
Balanced BST (splay tree) [14] Based on [13] O(NlogM)
Tree of holes [11] Based on [12] O(NlogM)
Preallocated tree of holes [11] Based on [12] O(NlogN)
Dynamic tree compression [2] - O(Nlog2M)

N is the length of the memory access trace and M is the number of data
elements used by the program.

consistent as possible. We realized slightly altered versions of
the original algorithms, designed to operate on loop-dominated
multimedia applications. Hence, they focus specifically on
arrays omitting any noncritical scalar elements. A list of the
available algorithms is provided in Table I.

IV. MEMADDIN TOOL DESCRIPTION

A. Basic Structure

As with the majority of dynamic analysis tools, MemAddIn
uses instrumentation and profiling to extract the reuse distance
for each reference pair. The extra code is inserted into the
source code of the application and the tool heavily relies on
MEMSCOPT source-to-source compiler [16] for this task. We
implemented MemAddIn as a Visual Studio extension in order
to provide a seamless and user friendly environment. Thus,
making it useful for application developers. The integration of
the tool in cross-platform environments, such us eclipse and
NetBeans, is planned as well.

B. User Interface

The input algorithm is handled as a Visual Studio C/C++
project. When launching MemAddIn the user should firstly
indicate the function to be examined from a list of all the
available functions in the currently edited C file. A number
of path related settings are also required to be set, as well
as the preferred algorithms for reuse distance measurement
and sampling. The second step of the procedure involves the
actual computation of each reference pair’s reuse distance.
Depending on the user’s indications, regarding measurement
algorithms, the execution times for this phase varies. Finally,
the visualized results are available in the optimization envi-
ronment presented in Figure 2.

All reference pairs are listed in a descending order, ac-
cording to their reuse distance (Figure 2, Point 1). They
are categorized by the loop pair they are enclosed in and a
distinct color is assigned for each group. A reuse histogram
is also available for the reference pairs (Figure 2, Point 2)
as well as a source code representation (Figure 2, Point 3).
Reference pairs are portrayed as colored arrows in the source
code, starting from the reference source and pointing to the
sink. Point 4 in Figure 2 lists the Loop Weight Metric (LWM)
values for each loop. LWM characterizes the criticality of a
loop respecting the number, size and accesses of the arrays

Fig. 2. MemAddIn user interface - reuse distance analysis window.

it operates on. Loops with high LWM are considered heavy
and could be candidates for loop optimizations. The LWM
calculation method for a single loop is described in Defini-
tion 1. The tool’s suggestions are available to the user as an
enumerated list (Figure 2, Point 5) where the transformations
are sorted ascending according to their importance for locality
optimization. The higher reuse distance a reference pair has,
the more important it is considered. At present, two types of
transformation suggestions are available. Both of them rely
on the grounds that reference source should be brought closer
to the sink in order to minimize the reuse distance: 1) when
the reference source is enclosed in a different loop than the
sink, a fusion of these loops is proposed, and 2) if they both
reside in the same loop some sort of tiling is appropriate. The
designer consults these results together with the LWM values
and decides upon proper transformations for reuse distance
reduction and the subsequent locality optimization.

Definition 1.

LWM(X) =

N∑
i=1

(V Ai × V Si) (1)

where X is the name of the loop, N is the total number of
variables accessed within loop X, VA is the number of accesses
a variable has within that loop and VS is the static size of that
variable.

V. EXPERIMENTS

We optimized a realistic loop-dominated image processing
application following MemAddIn’s suggestions. Cavity detec-
tor [5] is a medical diagnostic application used to analyze
MRI images. Five optimization steps have been applied and
we count the cache miss rate and overall RAM accesses on
each one of them. Two memory hierarchy scenarios are tested
using the XMSIM memory simulator [17]: 1) an SDRAM with
an underlying cache unit of 8 kb size, direct-mapped, 1 word
per block, 32 bits per word, with write-back policy, and 2)
the same hierarchy but with 16kb cache size. The input to
the algorithm is always a 640x400 pixels raster image. Cavity
detector involves 23 loops which comprise 5 top-level loop
nests. MemAddIn’s recommendations included the gradual
fusion of these nests according to the LWM weights of the
involved loops and the reuse distances of the array reference
pairs relating to them. After the application of the proposed
transformations there were 7 loops left, comprising a single
loop nest with all algorithmic stages of the original code.
RAM accesses reduced down to 61% (Figure 3b) while the
cache miss rate dropped from 46% to 38.5% for the 16kb
cache architecture (Figure 3c). Further optimization of cavity
detector is possible over tiling the remaining loops, as revealed
by an additional execution of MemAddIn. These optimizations
are not portrayed in Figures 3b and 3c though.

Furthermore, the reuse distance measurement algorithms’
implementations of the tool are demonstrated on cavity de-
tector and also on the sobel, roberts, robinson and canny
operators. We evaluate the time consumed by each algorithm

time stack mark. bit v. splay holes
0

1

2

3

·103

E
xe

cu
tio

n
tim

e
cavity cavity(s) sobel
roberts canny robi.

(a)
0 1 2 3 4 5

1.5

2.0

·107

R
A

M
ac

ce
ss

es

(b)
0 1 2 3 4 5

38

40

42

44

46

C
ac

he
m

is
s

ra
te

(%
)

8kb cache
16kb cache

(c)
Fig. 3. a) Performance comparison of reuse distance measurement algorithms.
⊗ denotes aborted executions that were taking too long (>1 hour). b) RAM
accesses and c) cache miss rate of each optimization step.

for data reuse distance computation for the reference pairs
of all arrays. Measurements were obtained without sampling
except from cavity(s) (Figure 3a) where the time sampling
algorithm was used on cavity detector, omitting 80% of the
memory access trace. MemAddIn ran on a Mobile DualCore
Intel Core i5-2450M CPU at 2.50GHz with 7.85 GB of
usable DDR3-1333 RAM. Figure 3a shows that all algorithms
performed proportionally to their theoretical time complexity
presented in Table I.

VI. COMPARISON TO RELATED WORK

A plethora of tools for memory oriented optimizations have
been proposed. Those utilizing data reuse distance analysis are
often used to estimate cache miss ratio [8], [18], [19] and for
locality optimization [20].

In [20] Beyls and D’Hollander present SLO, a cache pro-
filing tool that measures reuse distances in C programs and
suggests code optimizations in a similar way with MemAddIn.
The main differences of our work compared to SLO are: 1)
MemAddIn is an integrated framework for high level algorithm
design and optimization for embedded systems. Reuse distance
analysis is only a part of its features. SLO on the other hand
is dedicated to optimization suggestions via reuse distance
analysis, 2) a selection of reuse distance measurement and
sampling algorithms is available to the MemAddIn user for
experimentation, while SLO incorporates a single approach
for these tasks, and 3) a supplementary metric called LWM is
devised in MemAddIn for better user assistance in deciding
the proper code transformations. Additionally, work is cur-
rently carried out towards automating the application of the
optimizations suggested by MemAddIn directly into the source
code with no intervention from the developer. To achieve this,
a mechanism will be incorporated that uses the transformation
engine of the MEMSCOPT compiler [16].

VII. CONCLUSION AND FUTURE WORK

In this paper, MemAddIn tool is discussed with emphasis
on data reuse distance analysis capabilities. These are brought
forth through a mechanism for the generation of locality
optimization suggestions on input C applications. To achieve
this, we need to compute the reuse distance for all reference
pairs of the program. A number of algorithms from the
bibliography have been implemented and optimized for this
performance demanding task. Experimental results prove a

reduction of 39% in overall RAM accesses after optimizing
an application respecting the transformation hints proposed
by the tool. Future work considers the addition of parallel
reuse distance analysis algorithms and concepts. Effort is
also devoted on methods to automate the application of the
optimizations suggested by MemAddIn.

REFERENCES

[1] D. Blaza and A. Wolfe, “2013 embedded market study,” 2013. [Online].
Available: http://e.ubmelectronics.com/2013EmbeddedStudy/index.html

[2] Y. Zhong, X. Shen, and C. Ding, “Program locality analysis using reuse
distance,” ACM Trans. Program. Lang. Syst., vol. 31, no. 6, pp. 20:1–
20:39, Aug. 2009.

[3] K. Beyls and E. D’Hollander, “Reuse distance as a metric for cache
behavior.” in Proceedings of the IASTED International Conference on
Parallel and Distributed Computing and Systems, Anaheim, California,
USA, 2001, pp. 617–622.

[4] C. Lezos, G. Dimitroulakos, A. Freskou, and K. Masselos, “Dynamic
source code analysis for memory hierarchy optimization in multimedia
applications,” in 2013 Conference on Design and Architectures for
Signal and Image Processing (DASIP), Oct. 2013, pp. 343–344.

[5] F. Catthoor, K. Danckaert, S. Wuytack, and N. Dutt, “Code trans-
formations for data transfer and storage exploration preprocessing in
multimedia processors,” IEEE Design Test of Computers, vol. 18, no. 3,
pp. 70–82, May 2001.

[6] X. Shen, J. Shaw, B. Meeker, and C. Ding, “Locality approximation
using time,” in Proceedings of the 34th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, ser. POPL ’07.
New York, NY, USA: ACM, 2007, pp. 55–61.

[7] C. Pyo, K.-W. Lee, H.-K. Han, and G. Lee, “Reference distance as
a metric for data locality,” in High Performance Computing on the
Information Superhighway, 1997. HPC Asia ’97, Apr. 1997, pp. 151–
156.

[8] R. Sen and D. A. Wood, “Reuse-based online models for caches,”
in Proceedings of the ACM SIGMETRICS/International Conference on
Measurement and Modeling of Computer Systems, ser. SIGMETRICS
’13. New York, NY, USA: ACM, 2013, pp. 279–292.

[9] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger, “Evaluation
techniques for storage hierarchies,” IBM Syst. J., vol. 9, no. 2, pp. 78–
117, Jun. 1970.

[10] B. Jacob, S. Ng, and D. Wang, Memory Systems: Cache, DRAM, Disk,
1st ed. Burlington, MA: Morgan Kaufmann, Sep. 2007.

[11] G. Almasi, C. Cascaval, and D. A. Padua, “Calculating stack distances
efficiently,” in Proceedings of the 2002 Workshop on Memory System
Performance, ser. MSP ’02. New York, NY, USA: ACM, 2002, pp.
37–43.

[12] B. T. Bennett and V. Kruskal, “LRU stack processing,” IBM Journal of
Research and Development, vol. 19, no. 4, pp. 353–357, Jul. 1975.

[13] F. Olken, “Efficient methods for calculating the success function of
fixed-space replacement policies,” Lawrence Berkeley Lab., CA (USA),
Tech. Rep. LBL-12370, May 1981.

[14] R. A. Sugumar, “Multi-configuration simulation algorithms for the
evaluation of computer architecture designs.” Thesis, 1993, ph.D.

[15] Y. Tille, Sampling Algorithms, ser. Springer Series in Statistics. Springer
New York, 2006.

[16] G. Dimitroulakos, C. Lezos, and K. Masselos, “MEMSCOPT: A source-
to-source compiler for dynamic code analysis and loop transformations,”
in 2012 Conference on Design and Architectures for Signal and Image
Processing (DASIP), Oct. 2012, pp. 385–386.

[17] G. Dimitroulakos, T. Lioris, C. Lezos, and K. Masselos, “XMSIM: A
tool for early memory hierarchy evaluation,” in 2012 Conference on
Design and Architectures for Signal and Image Processing (DASIP),
Oct. 2012, pp. 405–406.

[18] E. Berg and E. Hagersten, “StatCache: a probabilistic approach to
efficient and accurate data locality analysis,” in Performance Analysis of
Systems and Software, 2004 IEEE International Symposium on - ISPASS,
2004, pp. 20–27.

[19] Y. Zhong, S. Dropsho, X. Shen, A. Studer, and C. Ding, “Miss
rate prediction across program inputs and cache configurations,” IEEE
Transactions on Computers, vol. 56, no. 3, pp. 328–343, Mar. 2007.

[20] K. Beyls and E. D’Hollander, “Refactoring for data locality,” Computer,
vol. 42, no. 2, pp. 62–71, Feb. 2009.

