MEMSCOPT: A SOURCE-TO-SOURCE COMPILER
FOR DYNAMIC CODE ANALYSIS AND LOOP TRANSFORMATIONS

Grigoris Dimitroulakos, Christakis Lezos, Konstantinos Masselos

University of Peloponnese, Department of Computer Science and Technology
Terma Karaiskaki, 22100 Tripoli, Greece
{dhmhgre, lezos, kmas}@uop.gr

ABSTRACT

In this paper, we present MEMSCOPT, a source-to-source
compiler incorporated in a system level design tool chain for
dynamic code analysis and loop transformations targeting
memory performance optimization. MEMSCOPT is user in-
teractive, supported by both Windows and Linux platforms
and integrates with Visual Studio and NetBeans.

Index Terms— System level design, high-level synthesis,
source-to-source transformations, dynamic code analysis

1. INTRODUCTION

Memory traffic has long time ago been proven to be a dom-
inant factor for performance and power consumption of dig-
ital hardware systems [1]. Currently there is a large number
of HLS tools delivering HDL specification from C-language
application descriptions and recent works [2] have already
started incorporating memory optimization before HLS. It has
been proven that a better memory hierarchy can be synthe-
sized when an optimized input specification is provided. The
philosophy of our tools relies on interactively synthesizing a
recipe of memory optimizing Source-to-Source (S2S) trans-
formations for a specific application based on analysis results.
Moreover, many programmers use Integrated Development
Environments (IDEs) that provide comprehensive facilities to
increase the programmers’ productivity. With this in mind a
S2S tool should also seamlessly integrate with popular IDEs.

In this paper, we present MEMSCOPT, an interactive tool
assisting the optimization of memory hierarchy of a digital
hardware system. MEMSCOPT was developed in the context
of the FP7 ENOSYS project [3]. The aim of the ENOSYS
project is to specify and develop a tool-supported design
flow for designing and implementing embedded systems
from UML input specification through seamless integration
of high-level system specification, software code generation,
hardware synthesis design space exploration and high level
system description optimization. MEMSCOPT is part of

*This work has been partially supported by the FP7 ENOSYS (FP7 ICT-
2009.3.4 248821) project, funded by the European Community.

the optimization environment that is developed to support
the source code optimization phase in the ENOSYS project
automated flow before conventional hardware synthesis and
software compilation.

The tool offers two major facilities: 1) Pre-transformation
dynamic code analysis and 2) Semi-automatic application of
S2S transformations. Semi-automatic comes from the fact
that the designer has to build up a script of transformations,
based on analysis results, that is automatically realized by
MEMSCOPT and XMSIM [4] tool. XMSIM is another tool
developed in the same context that simulates the performance
and power consumption of a given memory hierarchy for a
given application’s input specification in C language. There
are MEMSCOPT’s versions available for both Windows and
Linux operating systems that integrate with MSVS and Net-
Beans IDEs correspondingly. Even though MEMSCOPT can
execute from command line, this paper presents its usage with
the user interface.

The paper is organized as follows: section 2 illustrates the
user interface mainly from the interactive than the command
line environment aspect while section 3 describes the demon-
stration example. Finally, section 4 summarizes the work and
future actions.

2. SYSTEM DESCRIPTION

MEMSCOPT’s core is a command line application that acts
on a single C file, each time it’s called by the user. In or-
der to extend MEMSCOPT’s usability, the development of a
friendlier graphical interface is decided. The graphical user
interface (GUI) was developed using the C# programming
language. The GUI is a separate application that can be seam-
lessly glued on top of MEMSCOPT and do away with the
command line.

MEMSCOPT has 2 operational modes, one for each of
its two major facilities: 1) Analysis mode and 2) Transfor-
mations mode. In the analysis mode, the tool embeds the
analysis results directly into the application code using a Spe-
cial Annotation Language (SAL). SAL is used for both doc-
umentation and analysis assistance. It is expressed inside C

comments (Fig. 1b) and with it the user can interact with the
tool by providing input regarding analysis. Currently, SAL in-
cludes directives for loop naming, loop iterator identification
and loop count. Figure 1a shows the interface of the analysis
mode: The user can browse and select 1) a C code input file,
2) where to save the analysis output file and 3) the function
to monitor. If the user doesn’t provide a function name the
whole number of application loops are monitored or the user
may provide the function name he wish to focus the analysis.

a5 Analysis ==
Inpu C file:
I =
QOutput Cfile: /* @forloop- forloop 0 */
2 [: -
/* @iterator: k */
Mode
* 3 : . c %
Anntation /* @#iterations: 5 */
D A= for (k=-GB;k<=GB;++k) {
| Maritor function: tot+=Gauss[abs (k)]/
Analysis
| Run Process |

(a) Analysis interface.

Fig. 1: Dynamic code analysis.

a5 Transformations EI = @
Input Cfile: Transformations: 4
C:\Documerts and Settings'Chris\De: Browse..
Output directory:
C\Documents and Settings\Chris\De: Browse..
History: 2
o o
Add transformation
Loop 1name: foroop_4 tterator 1: GB X 2
Loop 2 name: |foroop_1 terator 2: L
Statement sequence numbers: 1,22
| Revert to selected Clear |
Transformation type:
Applied steps: 0 ‘ Loop shift - | Add
Current file:
Same as the input Cfile... Load transformations from file {* 1): Load...
| Run Process | | Load Progress ‘ ‘ Save Progress |

Fig. 2: S2S loop transformations.

Transformation of the code is an iterative process where
each step applies one or multiple transformations. Figure 2
shows the interface for the transformation mode: It includes
fields for: 1) Setting the input file and the output transforma-
tions’ directory, 2) Selecting a transformation from a trans-
formation pallete and configuring it, 3) Executing, saving and
restoring the transformation steps made so far or backtracking
to specific steps and 4) Manipulating the transformations of
each step. Currently there are 7 types of transformations sup-
ported by MEMSCOPT: loop shift, loop extend, loop rever-
sal, loop fusion, loop interchange, loop fission, loop normal-
ization, loop reorder, loop switching, loopscopemoveforward
and loopscopemovebackward. Finally, the whole number of
transformation steps applied, result in a transformation script

(b) Special Annotation Language.

which is an XML file recording the initial input file and the
full detail of each transformation step.

3. DEMONSTRATION

To demonstrate the functionalities of MEMSCOPT compiler
we perform dynamic code analysis and apply a series of loop
transformations on an image processing application called
cavity detector [5]. Cavity detector consists of a series of
loops, making it ideal for use as a demonstration of MEM-
SCOPT.

The series of loop transformations applied to cavity de-
tector consist of a number of steps containing one or multiple
transformations each. An output file is generated for every
one of these steps so that analysis can be performed at any
point of the process. Finally, the whole progress is saved in
an XML file for future use.

The primary objective of this demo is to display the capa-
bilities of the tool. Optimization of the code depends on the
transformations provided by the user.

4. CONCLUSION AND FUTURE WORK

In this paper, we present a source-to-source compiler for
dynamic code analysis and loop transformations targeting
memory performance optimization. Ongoing work consid-
ers: 1) support for more S2S loop transformations and 2) the
improvement of the analysis with a more sophisticated loop
weight function.

5. REFERENCES

[1] E. Catthoor, K. Danckaert, K.K. Kulkarni, E. Brock-
meyer, P.G. Kjeldsberg, T. Achteren, and T Omnes, Data
Access and Storage Management for Embedded Pro-
grammable Processors, Springer, 2002.

[2] J. Cong, P. Zhang, and Y. Zou, “Optimizing memory hier-
archy allocation with loop transformations for high-level
synthesis,” in Proceedings of the 49th Annual Design Au-
tomation Conference, New York, NY, USA, 2012, DAC
12, pp. 1233-1238, ACM.

[3] FP7 ENOSYS project, http://www.enosys-project.eu/.

[4] T. Lioris, G. Dimitroulakos, and K. Masselos, “Xmsim:
Extensible memory simulator for early memory hierar-
chy evaluation,” in VLSI (ISVLSI), 2010 IEEE Computer
Society Annual Symposium on, july 2010, pp. 375 -380.

[5] M. Bister, Y. Taeymans, and J. Cornelis, “Automated seg-
mentation of cardiac mr images,” in Computers in Cardi-
ology 1989, Proceedings., sep 1989, pp. 215 -218.

